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Summary of Research

The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the

development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the

SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the

images captured by an on-board camera in real-time. Design of such a module includes the

selection and characterization of robust, reliable, and fast techniques and their implementation

for execution in real-time. This report describes the results of our research in realizing such a

design. It is organized into three parts as described below.

Part I. Data modeling and camera characterization: A critical component of the vision

system is the imaging camera. Understanding the imaging characteristics of the camera as well

as its limitations based on an accurate model is the fu'st step in the design of the complete

system. In this part of the report we describe a systematic procedure and an experimental

protocol to measure the spatial and temporal noise in a digital camera. Specifically, we describe

the model and the measured characteristics of a Kodak Megaplus ES 1.0 digital camera

including its dark-field response, photo response nonuniformities, charge transfer efficiency, and

inter-pixel and other noises.

Part H. Algorithms for detecting airborne obstacles: Methods used for detecting airborne

obstacles using image sequences obtained from a camera mounted on a test aircraft are described

in this part. The performance of detection algorithms is characterized in the presence of camera

noise using theoretical and experimental methods. The problem of hazard detection in the

presence of background clutter in the image either due to clouds or the landscape below the

horizon is addressed. Algorithm fusion to overcome the limitation of individual algorithms is

studied. The image processing and tracking algorithms are described in this part and their

implementation details are presented in Part III.

Part HI. Real-time implementation of obstacle detection algorithms on the Datacube

MaxPCI architecture: We describe the computational requirements and time-complexities of

the target detection algorithms and their implementation in a parallel/pipe-line architecture. In

particular, we describe results of our implementation of these algorithms on the Datacube

MaxPCI architecture. We describe the results of the flight tests conducted to evaluate the real-

time performance of the system.

A list of publications resulting from this grant as well as a list of relevant publications resulting

from prior NASA grants on this topic are presented in the following pages. This research did

not result in any inventions.
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Part I

Data Modeling and Camera Characterization

Abstract

In this part, the procedure we used to model the noise characteristics of a digital

CCD camera is described in detail. The functioning of a CCD is described, along with

the various sources of noise present in the camera system. A systematic procedure is

developed to measure the spatial and temporal noise of the camera, and the results are

shown in detail. Finally, the measurement of spatial frequency response of the camera

system and the validation of various noise models are proposed as future work.
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Chapter 1

Introduction and Motivation

This part of the report describes the progress of research at Penn State's Computer Vision

Lab to develop a simple but accurate method for characterizing and removing the noise

introduced by a digital CCD camera. Digital CCD cameras offer superior performance as

compared to their analog counterparts. For example, digital cameras are free of the spatial

inconsistencies between rows and between frames (i.e., jitter) that may be caused by video

clock instabilities. By its nature, a digital imaging system is also highly immune to the

spatial and temporal artifacts that may be introduced by transmission-line noise. As noted

in Section 3 below, however, several noise processes may still be encountered in such a system.

The goal of the modeling and characterization of the camera described here is to enhance

the operation of a system for airborne obstacle detection. As an example, consider a Cessna

aircraft that has a length and wing-span of approximately 9 m (30') and the fuselage diameter

of approximately 1.2 m (4') [5]. The detection algorithm must be capable of detecting this

small target at least 25 seconds prior to a possible collision to allow for corrective actions by

the pilot. Assuming that both aircrafts are traveling at 125 m/s (250 knots), their relative

velocity can be as high as 250 m/s (500 knots). In such case, they would be 6.25 km

(3.5 nautical miles) apart 25 seconds before collision. Using a camera with a resolution of

60 pixels per degree, the image of the aircraft is of 5.0 x 0.7 pixels from a side view, lint only

0.7 x 0.7 pixels from a front view. It is clear that safety demands that noise effects even at

the sub-pixel level must be accounted for and compensated as much as possible.



Chapter 2

CCD Operation and Noise Sources

This chapter describes the theory of operation of a CCD camera, followed by the description

of various noise sources affecting a CCD camera.

2.1 Basics of CCD theory of operation

In this section, the theory of CCD operation is presented, and terms are defined. Variants of

CCD architecture are compared, and refinements such as blooming suppression are explained

[2]. Discussion will lead to specific features of Kodak E S 1.0 camera.

2.1.1 Theory of CCD operation

The charge-coupled device (CCD) first appeared in a 1970 Bell Labs technical report. Its

usefulness in both analog and digital electronics was recognized at once, and CCDs have

been used, for example, in signal processing applications such as delay lines for both analog

and digital signals. Since about 1980, however, the term CCD has become synonymous

with vide() imaging for 1)oth the mass-i)roduced consumer and the top-performance scientific

markets. Although CMOS imaging devices, offering a one-chip solution to image capture

and processing, are about to enter the consumer market, it. seems certain that CCDs will

continue to dominate the high-t)erfornmnee imaging market for some time to come.

To start with, it should be note(t that the CCD is an analog device, and not a digital

one. It is true that the operative quantities in the CCD are charges, and that because these

charges occur in quantizable form a.s electrons, there is a discrete character to the device's

operation. Any semiconduct.ive device, however, operates by the transfer of charge carriers.
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Although at the lowest level all such operation is discretizable, it is only when we associate

an information content to a transition between discrete levels of much greater magnitude

- a transition that is largely unaffected by the noise processes inherent in all such physical

systems - that we call such a device 'digital.'

In its simplest form, a CCD comprises an array of charge storage sites, wherein each

storage site is an MOS capacitor as shown in Figure 2.1 (a). An MOS (for metal-oxide-

semiconductor) capacitor comprises an insulating layer of silicon oxide sandwiched between

a metallic (e.g. aluminum) gate and a silicon substrate, which has been doped into semi-

conductivity with an excess of p-type carriers (holes). Typically, the gate is made of degen-

eratively doped polycrystalline silicon (or polysilicon) instead of a metal. Output leads are

bonded via ohmic contacts to the gate and the substrate.

When a potential is applied between the gate and substrate, a region develops in the

substrate underlying the gate that is swept free of p-type carriers by electrostatic repulsion

(Figure 2.1 (b)). Any electrons that may appear in this region (e.g., via injection or gener-

ation) will be attracted to the gate and thus will congregate below the oxide layer. Because

the p-type carriers have been repelled from this regiom the electrons are protected against

recombination, and the quantity of charge which they represent in the aggregate called a

charge packet will be preserved indefinitely. This region is called the depletion region, and

the electrostatic barrier that defines it is called a potential well.

Each storage site can hold only a finite number of electrons before it begins to overflow.

This number is called the 'fnll-well _ capacity and generally (for CCD imagers) ranges from

about 20,000 to about 100,000.

Once the charge packet has been formed, it remains to pass the packet along the array

from one storage site to the next without altering its contents. The information represented

by the value of the charge packet cannot be known until that value can be outputted fi'om

the chip. The basic and most common mechanism for the transfer of charge packets is the

three-phase clocked approach shown in Figure 2.2. The first phase is the application of a

potential to the A sites, creating potential wells. The second phase is to apply a potential to

the B sites as well, thereby spreading the charge packet between the A and B sites. The third

phase is to remove the potential from the A sites, which completes the process of moving

the charge packets from the A sites to the B sites. In the next three phases, the packets are

moved from the B sites to the C sites, and so on. From this description, one may understand

why early CCD delay lines were referred to as 'bucket brigade devices.'

Although one of every three sites is not used during each cycle, one may see that this

3
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empty site provides the necessary flmction of separating each charge packet, from tile next

one. Likewise, one may see that when a three-phase clocking method is used, the available

site size (and therefore the inaximunl site capacity) is reduced to one-third. For video

applications, for example, each pixel nmst be broken into three areas, only one of which may

be optically active, so sensitivity is necessarily reduced.

Because of the capacity and sensitivity constraints of the three-phase system, other ap-

proaches have also been developed. By changing only the clocking method, for example,

a four-phase approach may be used which allows an adjacent two of every four sites to be

active at a time, thereby increasing pixel capacity to one-half. One may obtain two-phase

operation by modulating the thickness of the oxide layer, and chip designs that permit one-

phase clocking also exist.. It is believed that our Kodak MEGAPLUS ES 1.0 camera uses a

three-phase clock, but the engineers we spoke to could not definitively confirm this feature.

In a two-dimensional array, the packets in each colunm are transferred as described above,

each column acting independently but in synchronization with all of the others. Each cohmm

empties into a shift-register row which operates in the salne fashion as the cohmms but on

a different timing scheme. That is, every time the colunm charge packets travel one site

down the array, the column transfer operation must t)ause while the entire shift register is

transferred sequentially through the terminal site. This terminal site, the last site on the

array, is a diode which converts each incoming charge t)acket into a potential (i.e., a voltage).

The stream of varying potentials may be amplified before t)eing outputted from the chip as

a raster image signal for flu'ther processing (including digitization).

2.1.2 CCD imaging architectures

In an imaging CCD, the charge packets are created t)y tire photoexcitation of bound electrons

into a free state by incident photons, and the subsequent migration of these free electrons

into the depletion region. (As an aside, we note that the depletion region is usually so

shallow that few free electrons are actually generated within it..) So long as light is incident

on the array, this process will continue. One may easily realize that the contimmtion of this

process after image capture and during the transfer of the charge packets would cause image

degradation.

One solution to this problem is the use of a mechanical shutter synchronized to tire

capture/transfer timing. A better solution, (:ailed 'electronic shuttering,' uses different areas

of the chip for capture and transfer. The transfer gates are covered with an opaque mask
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Figure 2.3: Basic architecture for a full frame CCD [2].

so that the packets being transferred will not be corrupted. As a consequence, the array,

may be illuminated constantly without affecting the transfer process, thus increasing camera

sensitivity. On the other hand, it should be noted that division of the chip into two areas

necessarily decreases the area used for image capture, thereby decreasing camera sensitivity.

At least two main divisional configurations exist. In a frame transfer configuration, the

active and shielded areas of the chip are completely separated, as shown in Figure 2.3. At

the end of the capture period, the packets from all of the active sites are simultaneously

dumped into corresponding sites in the shielded array, and the transfer process begins. Note

that a new capture period may begin at the same time the transfer process begins. Because

of the physical concentration of the active sites and the high area sensitivity that results,

high-performance cameras for scientific applications usually contain frame transfer CCDs.

In the interline transfer configuration, lines of storage sites for image transfer are fab-

ricated next to each line of active sites, as shown in Figure 2.4. Photodiodes rather than

MOS capacitors are most often used for the active sites in such arrays (as is the case in our

Kodak camera). The main disadvantage of this configuration is that as little as 20 % of the

chip area may be available for image generation, resulting in a severe loss of sensitivity. For

this reason, a microlens array is usually positioned adjacent to the chip surface to increase

the 'fill factor.' The microlens array contains one lens for each pixel, which focuses the light

incident on the entire pixel onto the area of the active site.
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Figure 2.4: Interline transfer architecture. The charge is rapidly transferred to interline

transfer registers via the transfer gate. The registers may have three or four gates [2].

2.1.3 Other features of CCD camera chips

If the depletion region of an active site is filled beyond capacity, the excess charge will

spill over and contaminate adjacent sites ill a process called 'blooming.' Spill-over between

adjacent columns is prevented during fabrication, but a particularly strong local ilhlmination

may saturate most of the length of the affected columns. Blooming suppression combats this

effect with anti-blooming drains that suddenly flatten the response of the active site above

a certain intensity.

In some cameras, such as our Kodak camera, the bias point of the anti-blooming drains

is variable. While reducing the bias point necessarily reduces the array sensitivity, in some

applications such a tradeoff may be acceptable. In cameras used to monitor automobile

traffic, for example, increased resistance to blooming caused by headlights may be worth

some loss of sensitivity.

Our Kodak camera also has a dual-channel transfer configuration. In this structure, the

even and odd rows of the array are processed and outputted through two separate channels.

This configuration allows faster data throughput: our camera can supply 30 frames of 1000 x

1000 pixels per second, while a single-channel version of the same camera can only supply

15 frames per second. With respect to noise analysis, however, it is important to recognize

the fact that pixels in adjacent rows may not be subject to the same noise processes at any

given time. This disparity is especially important when considering frequency-dependent



processes, such as the Modulation Transfer Function (MTF) as discussed in Section 8 below.

2.2 Noise sources in a digital CCD camera

In this section, various types of noise sources in a CCD camera are discussed [2]. Dark and

photoresponse noises are distinguished. CCD-generated noise (e.g. fixed pattern noise) and

noise generated by support electronics (e.g. readout noise) are distinguished. Other noises

such as interpixel effects (e.g. blooming and smear) and optical effects such as point-spread

functions are also discussed.

2.2.1 Overview of relevant noise processes

Although in-camera digitization offers good protection against transmission-line noise, the

signal outputted by the camera is only a flawed representation of the image which is incident

on the CCD array. For one thing, the photosites are like snowflakes in that none is exactly

like any one of the others, and each site will respond somewhat differently to the same level

of luminous excitation.

Likewise, in any such device that is operating above absolute zero, electrons are generated

thermally as well as optically. Once generated, each electron is indistinguishable from any

other, so some portion of the charge packet is necessarily always invalid. Moreover, each site

responds differently to this noise process as well.

Finally, the on-chip paths by which the charge packets are read out from the chip and

converted into potential values, and the off-chip circuitry through which these signals are

amplified and digitized, introduce errors of their own that may vary with signal amplitude

and frequency. An illustration of the imaging system path and some of the noise processes

associated with each step is presented in Figure 2.5.

2.2.2 Dark-field response and nonuniformities

As mentioned above, the electrons that migrate into the depletion region mav be generated

by thermal as well as photoelectric processes. Therefore, some signal will be outputted even

when the array is in total darkness. The result of this phenomenon is called the camera's

dark-field response.

Dark-field response will vary from pixel to pixel. This noise process is also extremely

temperature-dependent: for example, the noise level doubles when the array temperature

8



Atmosphere

Point-spread

function (PSF)

(a linear

function of

signal

frequency

Figure 2.5:

Lens

PSF

cos 4

effect

CCD

1) Localized effects:

Dark noise,

Photoresponse

nommiformities

2) Int.ert)ixel effects:

Blooming,

Charge transfer

etticiency

Camera

Support Electronics

Reset

(kTC)
noise

Readout

noise

(e.g. from

amplifiers

Quantization

noise

An illustration of the imaging system path and some of the noise processes

associated with each step

increases by 8 to 9 degrees Celcius. For this reason, measurements should be taken only after

the camera has warmed up. (In order to obtain an accurate measurement of the (lark field,

we believe that it is also imt)ortant to allow the array to warm up under normal operating

illumination conditions. A focused image of any intensity will certainly affect the surface

temperature of the array, and thereby influence the (lark component of the tota.1 response.)

The magnitude of the dark-tield response is also, of course, linearly dependent on the

exposure time, i.e., the period of time during which electrons are being collected. Although

thermal electrons may also potentially corrupt the charge packets during the transfer process,

transfer across the chip occurs so rapidly that this quantity is usually ignored.

Fortunately, the thermal noise process is simply additive. So long as we can reliably

estimate the number of such electrons collected at a particular site, it is a trivial matter to

subtract that measure from the gross response.

CCD chips are usually (if not universally) fabricated so that some of the active sites on

the periphery are shielded from ilhmfination. (An area of isolation pixels also separates these

dark pixels from the active ones in order to prevent light leakage.) During image processing,

the values returned by the clark pixels may be used to calculate an estimate of the magnitude

of the array's dark response, which may then be subtracted from the outputted image. As

the response of each active site is unique, however, the accuracy of this apt)roach to dark-tiel(t

compensation is not optimal.

9



Our Kodak camera includes a feature called 'dark-clamping' whereby such an estimate

of the dark field is automatically subtracted from the image. While not exactly accurate

and therefore not entirely appropriate for our present purposes, this feature is considered a

significant advantage for consumer applications. In 'dark-clamping,' the dark-field estimate

is automatically calculated and subtracted, so that the camera's output has already been

compensated. As the process is transparent and occurs directly at the chip output, it is not

necessary to keep track of exposure time or temperature. It may be possible to disable this

function in our camera via a software command, but the particular Kodak engineers with

such knowledge have so far been unresponsive to our requests.

2.2.3 Photoresponse nonuniformity

Just as the active sites vary in their response to thermal excitation, they also vary in their

photoresponse. In other words, each pixel will react differently to the same level of incident

illumination. The degree by which the number of photoelectrons collected by a particular

site varies from an arbitrary standard amount may be thought of as a local 'gain factor,' as

this noise process is multiplicative with respect to the level of excitation and the response of

each site is generally quite linear.

The dark-field and photoresponse nonuniformities together comprise the array's 'fixed-

pattern noise.' Generally, fixed-pattern noise is defined only at each pixel and has no spatially

varying component. In other words, there will be no correlation between the fixed-pattern

noise at two adjacent pixels. However, we note that there will usually (if not always) be a low-

frequency component to the photoresponse nonuniformity, caused by unavoidable variations

in the substrate thickness. These variations cause photons of the same wavelength to interact

differently at the quantum level at. different points on the array'. This effect, is not a separate

factor, though, and is incorporated into the general photoresponse nonuniformity.

2.2.4 Charge-transfer efficiency

Although each transfer gate successflllly moves well over 99.99 % of each charge packet to the

next gate in the column, some small amount of charge stays behind. When the incident image.

contains sharp (i.e., high-frequency) transitions between areas varying greatly in amplitude,

this process will tend to filter out the high spatial frequencies by blurring the transitions.

This effect increases with array size, i.e., with the number of transfers required to move each

packet off of the array'. Charge-transfer efficiency is a component of the array's frequency

10



responseand thereforeis includedin the array's modulation transfer function (Section 8).

2.2.5 Other interpixel noise mechanisms

As discussed in Section 2 above, blooming occurs when the charge in a saturated pixel

overflows into adjacent pixels in tile cohmm. By the anti-blooming measures described at)ore,

the post-saturation response can be largely reduced, but it cannot be eliminated. The extent

to which a charge packet has been corrupted by overflow is of course indeterminable, and in

processing the resulting images this effect must be kept in mind. Whenever a saturated pixel

is encountered, the signal outputted from its column neighbors must be considered suspect

and possibly corrupted.

Another source of interpixel noise, called 'smear' (or sometimes tunneling), occurs when

photoelectrons generated at one site migrate instead into a neighboring site. (This I)rocess

is quite different from the process, also called 'smear,' which occurs when transfer occurs in

a non-shielded array while the array is still being illmninated.) As this process is related

to signal frequency, we would expect it. t.o be inchlded in the array's modulation transfer

function (Section 8).

2.2.6 Reset noise

Reset noise arises when the capacitor which converts the charge packets into potential values

is not completely reset between packets. As this noise is highly temperature-dependent, it is

also referred to as kTC noise, where k is the Boltzmann constant, T is the temperature and

C is the capacitance of the device. In most if not all CCDs manufactured today, this noise

process has been virtually eliminated through the use of correlated double sampling (CDS),

whereby two samples are taken from each packet and averaged to remove the reset error.

2.2.7 Readout noise

As the signal generated by the CCD array is exceedingly small, it must be amplified before

processing. Each of the amplification and processing stages necessarily introduces its own

noise process, which will generally be dependent on temperature and signal frequency. On

the whole, though, this noise is random in time and cannot be compensated.
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2.2.8 Quantization noise

Conversion of the analog array signal into a digital quantity necessarily results in a certain

loss of information. While this noise is completely random and unknowable, it is easily

characterized as a zero-mean process whose variance is a fimction of the number of bits in

the digital output.
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Chapter 3

Estimation of CCD Noise

This chapter describes the methods for estimating the parameters of the temporal as well as

the fixed pattern noise of a CCD camera. Healy-Kondepudy noise estimation procedure is

used to estimate the temporal noise. An experimental protocol is developed for estimation

of fixed pattern noise, and the detailed mathematical analysis for least squares estimation

of the noise is presented. Results of noise estimation using the Kodak ES 1.0 camera are

described.

3.1 Description of Healey-Kondepudy noise estimation

procedure

Following a common model of CCD behavior, Healey and Kondepudy [1] express the digital

output D at each pixel as

where

r
D = (KI + EDc + :\s + NR)A + ,%_,

• K is a factor that characterizes the pixel's photoresponse,

• I is the incident illumination,

• EDC is the expected number of dark electrons,

• Ns is the shot noise,

• NR is the readout noise,
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• A is the analog gain, and

• NQ is the quantizat.ion error.

To reduce this expression, Healey and Kondepudy make the following three assumptions:

1. The photoresponse factor h" is very close to 1 for all pixels,

2. The expected number of clark electrons Et)c: is nearly constant across the array, and

3. The incident illumination I is nearly constant across the array.

Using these assumptions, and representing the image-wide means of I and E1)c as ] and

EDC, the expression for D is reduced to the form

D=p+N,

where

l_= A(I +/?pc)

and N is a zero-mean random variable characterized by

_2x =-42( / + L'z_c) + c_.

Here the noise term a_: is assumed independent of the number of collected electrons:

• q2

These relations imply

so by taking the differences between pairs of similar images (i.e. It1

Kondepudy estimate the t)aranleters ,4 and c7[..

= P2), Healev and

3.2 Development of pattern noise (flat-field) experi-

mental protocol

In this section, a history of what we have observed is t)resented, including the drawbacks

of our previous setups, and concluding with a detailed description of the final test bench.

Possible sources of error are noted, for example, the failure to consider spectral content, and

the use of neutral density filters in the optical path.
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3.2.1 Fluorescent sources

As a first step, we resolved to determine the fiat-field response of our camera: i.e., the level

of interpixel variation when each site in tile entire array was presented with the same level of

excitation. Because we had a relatively large computing capacity available, it. seemed that

we could capture and process large numbers of images fairly quickly, averaging the responses

over time in order to eliminate temporal variations, and thereby develop a fiat-field model

that could easily be verified. Obtaiuing a field illumination that was uniform in both time

and space, however, turned out to be problematic, as those with more optical engineering

experience might already know.

First, we concentrated on using reflected excitation. \_ reasoned that. if transmitted

light were used, it would be impossible to completely remove the image of the light source

from our field, even through diffusing sheets and a defocused lens. Therefore, refection from

a Lambertian surface appeared more promising in this regard.

Although indoor fluorescent lighting is preva.lent and apparently very uniform, it. im-

mediately became obvious that a fluorescent lighting source would not be suitable. The

accuracy of our results, and specifically their imnmnity to temporal variations, would de-

pend on our ability to collect a large number of images under identical excitation conditions.

Conventional fluorescent lights, of course, flicker at. approximately a 60 Hz rate, rendering the

level of illumination across any sequence of shuttered images very non-uniform and therefore

unusable for our purposes.

High-frequency fluorescent sources are available, being priced at about $1,000 for a 10-

inch square diffuse source operating at 15 kHz or higher. Even through a diffusing layer,

however, such sources are not uniform enough to present a transmitted fiat-field, and would

have to be used as target illuminators. We soon discovered that the problem of evenly

illuminating a diffusing target was not trivial, so this approach was not an optimal solution

either. (For a target, we used an opaque sheet of coated matte paper that. was supplied as

a protective spacer for laser-printer color transparency blanks.)

We did obtain good uniformity using the blank screen of a laptop computer as a transmit-

ted flat-field. The internal configuration of such a device is unknown to us, but the operating

frequency seemed to be high enough to provide teinporal uniformity. It was impossible to

vary the brightness of this field while maintaining the spatial uniformity, though. Although

when white the pixels were uniform, their brightlmss varied from row to row when they were

darkened. Also, the overall intensity of the source was insufficient to permit the use of neu-

tral density filters to obtain different brightness levels. Although such a. source is convenient
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and generallyavailable,tile difficulty of evenlyvarying its brightnessmakesit unsuitable for

the purposesof our model.

3.2.2 Incandescent sources

We found that an AC-powered incandescent source was also not entirely free from temporal

flicker. While DC-powered incandescent sources are available, we also found it impossible

to obtain spatially uniform illumination from such a source. We tried bulbs mounted in

reflectors and an overhead projector, each shone through a diffusing sheet, but were unable

to completely remove the filament image from the illumination.

Consultation with a Kodak research scientist gave us some insights into general optical

laboratory practices. We learned that DC-powered incandescent sources may be suitable for

fiat-field production, but only if a precision unit costing several thousand dollars is used.

Also, such experiments should be conducted in a temperature-controlled room, and after the

light source has been stabilized for at least 24 hours. The light from such a source cannot

be used to illuminate a fiat surface, but rather must be ported into an integrating sphere,

which is a hollow sphere with very small ports and a Lambertian inner coating. Besides

being very expensive as well, such a sphere is of little use after the CCD sensor is mounted

into the camera body.

3.2.3 Solar source

While we were investigating the suitability of other sources, we also tried to obtain a fiat-field

from a diffuse surface posed near a window. Note that if properly monitored, the short-term

temporal uniformity of the sun as a source can be excellent, as sunlight does not flicker.

However, we found it generally impossible to reliably duplicate a uniform illumination of a

fiat. diffuse surface. Every time we posed the target (on an artist's easel, mounted to a flat.,

uniform, and non-reflective surface), the pattern of light distribution varied.

As a location providing no less than 50 degrees of completely unobstructed open sky

was available, we began to consider using transmitted sunlight as a flat field. Although the

resulting setup could not be as completely specified as if a particular model of xenon lamp,

for example, was used, the experiment could still be duplicated anywhere that an expanse of

open sky was available. Also, we realized that the spectral content of the illumination could

vary without our knowledge and affect the camera's response. The freedom from flicker and

the apparent uniformity of a patch of blue sky far from the sun led us to investigate this
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acetate
/./ window

Figure 3.1" The test setup used for capturing fiat field images using the solar source.

possibility.

We began by thoroughly cleaning the window inside and out. Then, a double layer of

matte acetate was mounted as a diffusing target to increase uniformity and also to reduce

the illumination level somewhat. The camera lens was positioned about six inches awav from

the acetate, pointed at the center of the open expanse, and focused to infinity. This test

setup is illustrated in Figure 3.1.

We used a Nikon 58mm f/2.8 Micro-Nikkor lens for most of our experiments, as the

performance of this lens was rated at the top in several surveys we found on the Web. The

F-mount allowed us to always mount the lens in exactly the same rotational orientation,

although we later found the lens to have excellent symmetry of response with respect to

the optical axis. In order to obtain varying levels of sensor illumination, we varied the lens

aperture (minimum aperture: f/32) and also used high-quality neutral density filters.

We conducted our experiments under clear skies in April 1998 between 10:00 AM and 4:00

PM. We found that after 4:00 PM, the level of ilhnnination began to decrease perceptibly

from minute to minute. Images were collected in sets of 100 at no less than 25 fps, so each

set was collected in less than 4 seconds. Each run of sets, characterized as a number of sets

taken at several different apertures, was collected as quickly as possible (generally within 10

minutes) to provide a tentative basis for comparing the lens response at different apertures.
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Uniformity of ilhmfination levelwithin eachset of 100imageswasverified by taking tile

averagepixel value for eachimage,identifying the maxinmm amongthe 100averages,and

characterizingthe other averagesaspercentagesof the maximum. A set, and consequently

the entire run, wasrejectedif a deviationof more than 1% wasdiscoveredfor averageimage

valuesof 100gray levelsor more,on a scaleof 0 to 255. For averagevaluesof under 100gray

levels,deviation of from 3 to 5 % weresometimesaccepted,as we recognizedthat camera

noiseprocessescontributed a greater portion of the error in suchimages.

Oncethe uniformity of eachset.within a run had beenverified, eachset wascondensed

into two 1000x 100032-bit floating-point arrays. The first array wasthe pixel-by-pixel mean

of the 100imagesof the set, and the secondarray was the pixel-by-pixel variance. These

two arraysbecamethe input parametersfor the model describedin Section6 below.

3.3 Development of pattern noise experimental analy-

sis

In this section, a detailed mathematical analysis of the linear system model is presented.

Assumptions are identified and discussed.

We begin by assuming that the behavior of each pixel at any particular moment in time

can be described by an equation of the form

y = m..r + c + rl = E[y] + 7/ (3.1)

where

• y is the digital output signal,

• x is the incident illumination (with x0 defined as zero),

• c is the constant portion of the dark field noise, or additive fixed pattern noise (FPN),

• rn is the constant portion of the interpixel photoresponse nonuniformity or multiplica-

rive FPN,

• r/is a noise term that includes all other system noises such as shot noise, readout noise,

system nonlinearities, and quantization error,

• E[y] is the expected value of y.
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The temporal noise.r/can be modelled as a zero mean Gaussian variable with a variance

_[7]] = V[_] _--w 0 + '//;1E[y] (3.2)

The term w0 corresponds to the constant portion of the noise variance, caused mainly by

the readout noise, whereas the wl term corresponds to the shot noise, which is Poisson

distributed with a variance proportional to the output mean. The resultant noise due to

these terms can be approximated with a Gaussian distribution.

If the FPN parameters m and c can be determined in advance, the FPN can be compen-

sated prior to further processing. This is likely to improve the performance of the detection

algorithm. Also, the temporal noise parameters w0 and wl would help us determine the

performance of the algorithm.

Let Xo, xl,x2...x,_ denote a number of intensity values at which observations are made,

with x0 = 0 denoting the zero intensity. For each intensity, we can write:

yi = m.ri + c + T1 (3.3)

Let the mean and variance of a gi be denoted by Ei = E[yi] and 1.} = I'[yi] = cry. Then,

An estimate of the mean and variance can t)e obtained by using the sample mean and variance

of a number of images obtained under identical conditions. A set of such equations obtained

by substituting these in (3.4) can be solved in least, squares sense to give the values of w0

and It? 1 .

For determining values of m and c for each pixel, the following method is used. Denoting

the average over N observations with an overbar, we have

Yi = m£i + C + Oi (3.5)

Since _]i is assumed to be normally distributed as N(0, cy_), yi is normally distributed with

parameters

E[. d : E[. d = + c

l'[0j] = l'[f]il- l_[rJ_] - _
N N

Consider a neighborhood centered at the current pixel. Assume that the neighborhood is

small enough so that the incident illumination xi remains approximately constant across it,

but large enough so that the constituent pixels' nonuniformities will average out to provide
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us with a good measureof the local incident illumination. Denoting the averagevalue over

this neighborhoodby the operator p._, we have

giving

i,.,[y0]= l,s[c]+ t,s[Oo]

t,._[o_]= t,._[,,_]*i+ l,s[_:]+ i,.,[<

i,.,[:Ji]-i,.,[v0]-l,.,[,/i]+ l,,[O0]

The noise terms r/i, are assumed to be independent and distributed as N(O, (r_). \'_ also

assume that these terms are uncorrelated in space, i.e. that the values 7/i for any pixel are

independent of the values for the pixel's neighbors. Then

where N_ is the number of pixels in the averaging neighborhood. Because N_ will be on the

order of 50-100, the terms P._[_l,] and p.._[7)0]will be distributed very close to zero, and we

may discard them in the derivation.

Note that only the relations between the various illumination levels xi are important, and

not. their absolute values. We may therefore choose any convenient scale for our estimating

xi. Setting p_[m] equal to 1, we obtain an estimate of xi giwm by:

J'i = P_[Oi]- P_[._o] (3.6)

From 3.5 and 3.6 we get

./]i -- '_'i = (r/t -- 1 ):k i q-- (: Jr-'f]i.

We define the following variables:

z0 - c- I,._[_0],

el _m - 1.

After substitutions, we obtain the expression

?)i - p_ [_5i]= zl 2i + Zo + I_i.

We may now express the behavior of any particular pixel across various levels of incident

illumination with the linear system

y=Az+¢,

2O



where

= [(Oo- _,.,[,Ool),(_,- #._[_,]),.-.

0 :/'1 "'" Zn • )TA = = (ao al .. an ,
1 1 ... 1

z=[z, zo] T,

¢ = [0o .... 0,,]7"

_/ -- r, (o,, - _ ,[yd)]

\Ve may also assume that the noise terms qi are uncorrelated in time, so that tile error

¢ = (y - Az) is distributed as N(O, R), where

Therefore, we can apply, least-squares methods to estimate z, as well as its covariance P.

3.4 Results of noise estimation

In this section, we describe the results of estimating tile spatial and the temporal noises.

The spatial noise can be reduced by using tile estimates of its parameters for every pixel,

to compensate it. However, the temporal noise varies from frame to frame, and therefore

cannot be reduced by such a method.

3.4.1 Estimation and correction of spatial noise

In this section, results showing significant reduction of pattern noise in time-averaged images

are presented. The model's lens-independence is demonstrated. Failure of the model to

reduce noise in individual images is also noted.

CCDs are universally reported to be extremely linear devices. Indeed, the basic assump-

tion of our camera model above is that each pixel operates in essentially a linear fashion.

In order to test that assumption, we conducted prelinfinary experiments to determine the

camera's response at different flat-field illumination levels. Results of these experiments are

shown in Figure 3.2, where each point represents a mean value of the central 1000 x 1000

pixels of the array, and Figure 3.3, where the mean dark value has been subtracted. \_>

varied the illumination level by changing the lens aperture, and assumed for the purpose of

these experiments that tile illumination thereby changed in perfect powers of 2. Therefore,
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Figure 3.2: Camera's response at different fiat-field illumination levels. Each point represents

a mean value of the central 1000 x 1000 pixels of the array.
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Figure 3.3: Camera's response at different fiat-field illumination levels, after subtracting the

mean dark value. Each point represents a mean value of the central 1000 x 1000 pixels of

the array.
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Figure 3.4: The plot of tile signal variance against the signal mean.

the largest error in these plots is in the ordinate (illumination level), and not in the abscissa

(camera response).

For convention's sake, we also present a rudimentary photon transfer curve in Fig-

ures 3.4 and 3.5. This curve, a plot of signal mean against signal variance, is the most

commonly used CCD performance curve. Generally, three areas should be discernible, cor-

responding to the noise process that predominates in each section. To the left, the curve

is theoretically flat, as readout noise predominates at low levels. In the center, the curve

has a slope of 1, as photon shot noise is the predominant noise process here. On the right,

the curve has a slope of 2, corresponding to pixel nonuniformity noise (i.e., fixed pattern

noise). Of these three noise processes, of course, only the last is in any way deterministic

and compensable. The point where the second and third sections meet represents the signal

level at which fixed pattern noise limits the cam(,ra's sensitivity. In these terms, the object of

this research is essentially to move this point, to the right. Our final report, will include more

refined versions of this curve, updated to incorporate the large amounts of data obtained

since these plots were generated.

Our primary lens was the Nikon 58ram Micro-Nikkor, and its response to a high-level

flat-field illumination at apertures of f/4 and f/16 is shown in Figures 3.6and 3.7. (Unless

noted otherwise, we use examples taken at high levels of illumination throughout this section.
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Figure 3.5: The plot of the signal variance against the signal mean after subtracting the

mean (lark value.

Such images contain the highest noise levels, and also the greatest proportion of compensable

noise.) The reduction in lens response as one moves away from the image center is clearly

evident. More puzzling to us is the fact that the response becomes more non-uniform as

the aperture becomes smaller, as lenses are generally assumed to perform better at smaller

apertures. This effect is illustrated in Figure 3.8 by taking a cross-section of the image (i.e.,

the center row) at different apertures. Efforts to consult with a local optical expert in order

to explain this effect are ongoing.

Figure 3.9 shows cross-sectional results at aperture f/4 for several different runs of images

(collected as described in section 5 above, over a period of days or weeks), each at a different

level of incident illumination. In Figure 3.10, these curves are normalized to correspond to

Run #1 at the central pixel. One can see that errors as great as 1% as evident on the left side

of the image. As we would expect the lens response at any one point to be perfectly linear

with respect to changing illumination levels, we must assume that these errors represent a

flaw in our flat-field illumination. One possible cause is that (with reference to Figure 3.1)

our tests were conducted in a room with white wails, and reflections from the room onto

the acetate and thereby into the camera may" have corrupted our results. Note, however,

that the errors are generally much smaller than 1%, and that the largest normalization

factor is nearly 2. Overall, then, this figure demonstrates that our fiat-field setup is quite
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Spatial response of Nikon lens (f4. exposure 200)
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Figure 3.6: The response of the Nikon lens to a high-level fiat-field illumination at aperture

of f/4.
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Figure 3.7: The response of the Nikon lens to a high-level flat-field illumination at aperture

of f/16.
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Figure 3.8: The cross section of the lens response at the center row, showing plots of the

normalized gray level, for a number of aperture settings.

consistent. We would expect that results could be fllrther improved by posing a black matte

shield around the calnera to keep out reflections.

One of the runs was arbitrarily selected, and the procedure described in Section 6 above

was used to develop a camera noise model. Figure 3.11 shows the result of applying that

model to the image of the highest-level set in this run. Essentially, then, we are applying

the noise model to itself here. Therefore, this image represents the limit to the amount of

noise reduction we (:an expect. Assuming that the image presented by the lens is a smoother

version of the final curve, we can see that a very small level of noise can be expected.

Figure 3.12 shows the result of applying the noise model to the high-level set image of a

different run (i.e., one taken on a different day). It is immediately obvious that our model

gives a significant degree of improve,nent.

Figure 3.13 shows the inodel as apt)lied to a low-level set image of a different run. The

level of improvement is nmch reduced, as the level of compensable (i.e., deternlinistic) noise

in such an image is negligible.

As our model is specific to the array, and not to any particular lens, we also tested

its application to set images from a different, lens. Figures 3.14 and 3.18 show the flat-

field response of a Fnjinon zoom lens set to 12.5 mm at apertures of f/5.6 and f/16. It is
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Figure 3.9: Cross sectional results at aperture of f/4 for several different runs of images, each

at a different, level of illumination.
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Figure 3.10: Cross sectional results at aperture of f/4 fl_r several different, runs of images,
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Application of noise model 1o conslituenl image (center row, exposure 200)
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Figure 3.11" Result of applying the camera noise model to an image from a high-level set.

Application of noise model to non-constiluent image (center row, exposure 200)
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Figure 3.12: Result of applying the camera noise model to an image from a high-level set of

a different run.
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Figure 3.13: Result of applying the ('amera noise model to an image from a low-level set of

a different run.

immediately apparent that tile response of this lens is not so precise as that of the Nikon

lens, perhaps due to the mechanical compromises necessary for the zoom operation.

Figure 3.16 shows the result of applying our model to a high-level set from this lens.

Comparison to Figure 3.12 shows that many noise spikes occur in the same location, as

would be expected. However, tile general shape of tile curve shows the same dip to the right,

suggesting again that our fiat-field is slightly flawed. Iml)rovement does not quite reach the

level of that in Figure 3.12, but is excellent nonetheless.

Finally, we note that in all of the results above, the noise model was applied not to

individually captured images, but rather to the inean image taken from 100 individual images.

Therefore, temporal (nondeterministie) noise was significantly reduced. In Figure 3.17, we

applied the noise model to an individual image. One can see that our model had little

effect beyond slnoothing the quantized levels. Tile results above clearly demonstrate that

for a set of time-averaged images, our model can offer a significant reduction in camera-

generated noise. Unfortmmtely, for individually captured images, temporal noise processes

predominate which cannot be removed.
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Spatial response of Fujinon lens (125 mm, f_5.6, exposure 200)
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Figure 3.14: Flat-field response of a Fujinon zoom lens set to 12.5 mm at f/5.6 aperture.

Spatial response of Fujinon lens (125 ram, f,'16, exposure 200)
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Figure 3.15: Flat-field responso of a Fujinon zoom lens set to 12.5 mm at f/16 aperture.
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Application of noise model to image from different lens
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Figure 3.16: Result of applying our model to a high-level set from the Fujinon lens.
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Figure 3.17: Result of applying our model oil an individual image, instead of the mean of

images. The model has little effect beyond smoothing the quantized levels.

31



3.4.2 Estimation of temporal noise

To estimate the temporal noise in the camera images, we collected runs of sets of images.

Each set contained 100 images (i.e. N = 100), collected at a rate greater than 28 fps (i.e. over

a period of less than 4 seconds). In order to verify that tile illumination level was constant.

across this period, we took the image-wide mean of the central 1000 x 1000 pixel region of

each image, and found the difference between the means of the brightest and darkest images

in the set (relative to the mean of the darkest image). For brightly-lit images (i.e. mean

gray level from 150 to 255), the maxinmm such difference we accepted was 1.02_; most

differences were less than 0.5_,. At lower levels of illumination, the increasing proportion of

temporal noise caused this difference to rise, but even at the lowest illumination levels we

accepted no runs with differences greater than 5_,. Each run comprised three to eight sets

of images, taken at progressively narrower aperture settings. We collected a run within as

short a time as possible, to permit us to assume if necessary that the available illumination

had remained constant (such an assumption is not necessary for the model described here).

Each accepted set of images was later condensed into two floating-point arrays of size

1024 x 1024, representing the sample mean and sample variance values at each pixel.

For estimating the temporal nois_ parameters, imagewide means of these arrays are used

as estimates of Ei and I"} in the equation:

li = Wo + wlEi (3.7)

The equation is solved using least squares to obtain the paramters w0 and w_. The plot of

I_,,}to Ei is shown in Fig. 3.18. Its slope is u,l and the y-intercept is w0. The values of these

parameters obtained are:

w0 = 0.171,wl = 5.6 x 10 -a (3.8)

This corresponds to a noise variance of c_2 = 0.888 or standard deviation of o = 0.942 for

the background value of 128. This value is nsed in experiments for testing target detection

algorithms.
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Figure 3.18: The plot of the sample variance 1_- against the sample mean E,: for different
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parameters of the temporal noise can be ot)tained
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Chapter 4

Future Work

The following avenues of fllture work can be explored. The spatial frequency response of the

optical system consisting of the lens and the camera, can be characterized using the concept

of Modulation Transfer Function (MTF) as described below. Also, the camera noise models

can be validated using a statistical hypothesis test.

4.1 Description of Modulation Transfer Function esti-

mation

The spatial frequency response of an optical system is commonly characterized with a plot of

the system's modulation transfer function (or MTF), which shows the normalized magnitude

of the system's response to a range of input frequencies. The MTF may be expressed as

the Fourier transform of the system's line spread function (LSF), which is the response to a

flat-field containing a single sharp line. In other words, the LSF is a two-dimensional analog

to an impulse response. (For the purposes of this overview, we will ignore the fact that a

CCD array responds differently in the row and the column dimensions.)

Traditionally, the LSF of a CCD is obtained by projecting a very narrow band of light

onto the array. In an SPIE paper, Lin and Chan describe a method of computing the MTF

from the edge-spread function, which may be differentiated to obtain the LSF [4]. The

edge-spread function is obtained from a high-contrast target, making the measurement more

flexible, more accurate, and less expensive than the traditional method of LSF measurement.
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4.2 Noise model validation

An important issue to be addressed as part of this research is the validity of the noise

models used to generate synthetic images. In other words, one must answer the question of

whether the computer generated images are indeed a set. of representative images suitable

for the performance characterization of tile detection algorithms. This can be done by using

a statistical hypothesis test described in [3].
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Part II

Algorithms for Detecting Airborne Obstacles

Abstract

This part describes the approaches used for detecting airborne obstacles using

image sequences obtained from a camera mounted on an aircraft. A number of basic

algorithms were implemented for airborne obstacle detection. The performance of these

algorithms was characterized in presence of camera noise using theoretical and

experimental methods. Since the performance degrades in the presence of background

clutter, a special approach to address the problem of hazard detection in presence of

clutter was studied. This approach uses the differences in the behavior of translation and

expansion of image features corresponding to the objects on a collision course and the

background clutter. Algorithm fusion for combining different algorithms to overcome

their individual limitations was also studied. In addition to this work on detecting objects

on collision course, algorithms for detecting objects crossing the aircraft were designed

and implemented on a real-time system. The image processing and tracking steps of the

system are described in this part, whereas the hardware implementation is described in

the next part.
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Chapter 1

Introduction

Image sequence analysis has been widely used in computer vision. This part describes the

use of image sequences for detection of airborne obstacles in the flight path of an aircraft.

Continued advances in the fields of image processing and computer vision have raised

interest in their suitability to aid pilots to detect, possible obstacles in their flight. 1)aths.

For the last few years, NASA has been exploring tile use of image sequences for detecting

obstacles in the flight, path of an aircraft. NASA Langley Research Center supported a

project to enable pilots to 'see through fog' using Passive Milli-Meter Wave (PMMW) images

of low resolution. For this project, Tang and Devadiga [12] from our group had developed

methods to locate the runway and detect obstacles on and outside the runway. The resulting

output can be used by the pilots to decide whether to land or not.

Obstacle detection is also possible with visible-light image sequences. In the design of

a High Speed Civil Transport (HSCT) aircraft with a limited cockpit visibility, NASA has

proposed a Synthetic Visioll System (SVS) in which high resolution video images would

be obtained using cameras mounted on the aircraft. These images can be used to detect

obstacles in the flight path to warn the pilots and avoid collisions. For aircraft ol)erations,

both airborne obstacles, a.s well as the obstacles on the runway surface should be detected.

Algorithms for detection of airborne objects from images are abundant in the l)ublished

literature. A systelnatic performance characterization of a number of target detection al-

gorithms was perforined by using linage degradation models for digital cameras. It was

observed that the algorithms that were studied have a good performance on images which

do not have background chatter. However, the performance degrades severely when back-

ground clutter is present. Thus, the goal of this work has t)een to design algorithms which

perform better in cluttered ba(:kgr(mnd environments, with low probabilities of false alarms



and mis-detectionsand capability of target detectionearly enoughto avoid a possiblecolli-

sion. To achievethis goal, a specialapproachwasusedto (tiscriminatehazardousobjects on

collision coursefrom the backgroundclutter. Algorithnl fusion wasstudied for combining

different algorithms in astatistical frainework, to overcometheir individual limitations. The

performanceof the fusedalgorithm was found to be better than the individual algorithms

under appropriate conditions.

This part of the report is organizedasfollows: Chapter2 describesthe basic,well-known

algorithms usedfor detection of airborne obstacles. Thesealgorithms were tested on real

image sequencesprovided by NASA. In Chapter 3, the performanceof these algorithms

is experimentally characterizedusing the a.t)proachdescribedby Kaimngo et al. [10]. The

theoretical characterizationof the algorithms' performanceis describedin Chapter 4, and

the experimental performanceis comparedwith the theoretical t)erformance.

The main contribution of the researchfor the detectionof hazardousobjects is described

in the next two chapters. A special approachis proposedfor discriinination of ol)jects

on collision or near-collisioncoursefrom backgroundclutter. This approachis describedin

Chapter 5wheredifferencesin thebehaviorof translation andexpansionin the imageareused

to separatehazardousobjectsfl'om clutter. Chapter 6 describesthe Bayesianmethodology

used for combining detection algorithms in a statistical framework. Performanceof fllsed

algorithm is comparedwith that of the individual algorithms.

In addition to hazardousobjects, it is also useful to detect and track objects crossing

in front of the aircraft. A real-time systemusing pipelined imageprocessinghardware was

designedfor this purpose. Chapter 7 describesthe imageprocessingoperations which are

performed by the pipelined hardware,and the tracking operations performed on the host

machineto form a completereal-tinle system.

Chapter 8 concludesthe part and exploresavenuesfor flltnre work.



Chapter 2

Object Detection Algorithms

This chapter describes the algorithms that were implemented to detect airborne obstacles

in the flight path of a flying aircraft. Statistical theory used for target detection is first

described, followed by a number of basic steps useful for removing background clutter, am-

plifying the signal to noise ratio, aM detecting objects having different sizes and velocities.

Results obtained by using real image sequences are also described.

2.1 Background

NASA's need for enhanced capabilities in obstacle detection using image processing requires

robust, reliable and fast techniques. These techniques should provide a high probability of

detection while maintaining a low probability of false alarm in noisy, cluttered images of

possible targets, exhibiting a wide range of complexities. The size of the image target can be

quite small, from sub-pixel to a few pixels in size. As an example, consider a Cessna aircraft

that has a length and wing-span of a pproxinlately 9 rn (30 ft) and the fllselage diameter of

approximately 1.2 m (4 ft) [19]. The detection algorithm must be capable of detecting this

small target at least 25 seconds prior to a possible collision to allow for corrective actions

by the pilot. Assuming that both the aircraft are traveling at 125m/s (250 knots), their

relative velocity can be as high as 250 m/s (500 knots). In such case, they would be 6.25 km

(3.5 nautical miles) apart 25 seconds before collision. Using a camera with a resolution of

60 pixels per degree, the image size of the aircraft is 5.0 x 0.7 pixels from a side view, but

only 0.7 x 0.7' pixels from a front view. Furthermore, the detection algorithm must report

such targets in a timely fashion, imposing severe constraints on their execution time. Finally,

the system must not only work well under the controlled conditions found in a laboratory

3



and with data closely matching the hyt)othesisused in the designprocess,but it nmst be

insensitive i.e., nmst be robust to data uncertainty due to various sonrces, including

sensor noise, weather conditions, and cluttered backgrounds.

Extensive work has been done on tile problem of target detection. \Vh(,n the signal to

noise ratio is low, it is preferable to use the 'track before detect' approach. In this approach,

an object is tracked over multiple frames before making a hard decision on the presenc_ _ or

absence of a target. The simplest way to integrate the input images ov(_r multiple frames

is by temporally averaging them. When the image motion of the object is very small, as

in the case of an object being exactly on a collision course [14], this happens to be the

best approach. However, if the object has a significant image motion, other approaches are

needed. Nishiguchi ctal. [16] proposed the use of a recursive algorithm to integrate mnltipl_

frames while accounting for small object motion. A dynamic programming approach was

used by Barniv [4] and Arnold et al. [2] to detect moving objects of small size. The theoretical

performance of this approach was characterized by Tonissen and Evans [18].

The above algorithms perform well when the background is uniform. However, in real

situations the hazardous object should be detected not only against uniform background,

but also against backgrounds such as clouds, ground or water. The features introdnc(,d due

to a non-uniform background which interfere with object detection are collectively known

as clutter. Thus, the objective of the detection algorithms is to successfully detect the

hazardous object, without giving unnecessary false alarms from clutter. Subtraction of

consecutive images is often used to remow_ stationary clutter. Howew_r. an object on a

collision course could be nearly stationary in the image [14]. Hence, this method is not useful

for our application, since it could remove the object as well. Alternatively, morl)hological

filtering [6] removes objects of large size, usually corresponding to clutter while retaining the

objects of small size. This approach is usefill in removing large clutter, such as clouds. But

it. does not remove small-sized clutter.

2.2 Statistical decision theory for target detection

Statistical decision theory [13, 17] can be used to design optimal or near-optimal detection

algorithms, as well as to characterize their performance. The input to the algorithm is a

sequence of images, each composed of a large number of individual pixels. These pixels are

degraded by various sources, such as atmosphere, lens, and camera noise. Based on the

statistical behavior of this degradation, the image pixels can be combined in spac_, an(t tiine.



to makestatistically optimal decisionabout the presenceor absenceof a target. For making

thesedecisions,probabilistic modelsof the signal and its degradationcanbe used.

Let H0 and H1 denote the hypotheses that the target is absent or present, respectively,

and P(Ho) and P(H1) denote their respective prior probabilities. Let z represent the vector

of observations from which one is supposed to determine the presence or absence of a target.

By Bayes' rule, the I)osterior probabilities are given by:

P(zIH1)P(H_)
P(HllZ) =

The ratio of these probabilities is given by:

e(UllZ) P(Hl)p(zlH1)

P(H01z) P(Ho)p(zlHo)

, P(Ho[z) = p(z[Ho)p(Ho)
p(z) (2.1)

- _LH(z) (2.2)

where LH(Z) proportional to tile ratio of the probabilities is called the likelihood ratio.

When the algorithm reports a target even where there actually is none, it. is called a

false alarm, whereas when it. does not report an existing target, it is called a Inis-detection.

The performance of a detection algorithm is characterized in terms of false alarms and ntis-

detections. According to the Neyman Pearson criterion [13, 17], the number of mis-detections

for a given rate of false alarms can be minilnized by thresholding the likelihood ratio Lu (z).

The threshold is a fimction of the required rate of false alarms. In place of the likelihood

ratio, any of its monotonic function (such as the logarithm) can be used. Such a flmction is

called a discriminant function.

To decrease the probabilities of false alarms and mis-detections, one can integrate ob-

servations spatially or temporally. Let the N elements zl, z2... zN of z be independent

observations. The likelihood ratio and its logarithm (log likelihood ratio) are given by:

p(zl,z2 ...ZN]H1) _-[ p(z_lH1)
Lid(z) = p(zl,z2 ZNIHo) = _" p(zilHo)

(2.3)
• " " i=l

N

l(z) = log LH(Z) = _ [logp(zilH1) - logp(zi]Ho)] (2.4)
i=l

In the case of zi's having normal distributions in absence and presence of target, such that

their prot)ability density functions are:

p(zilHo)_l [z____]
exp ,p(z_lH,)- _exPL 2_ 2 j

The log likelihood ratio is given by:

N

l(z) -- logLH(z) = E -(zi - IZ)2 + z_
i=1 2c_2 = a--7 z, (2.6)i=1 2°2



This is a monotoni<:function of _ zi. Hence, thresholding the sum (or mean) of the obser-

vations yields all optimal detector. Since sum and mean are linear functions, thev are also

normally distributed.

Consider a discriminant flmcti<)n which is norinallv distributed in absence and presence

of target as N(llo, a'_) and N(l,l, o-_), respectively with equal variances o-g = o_ but unequal

means P0 and #1. If this function is thresholded to obtain a particular false alarm rate, it

can be shown that the correspon<ting mis-deteetion rate is a function of its Signal to Noise

Ratio (SNR) given by (t_ - tZo)/C_o • Hence in this case, the performance in terms of false

alarm and mis-detection rates is determined by the SNR.

If N independent normal observati<ms are made, their sum is distril>uted as N(0, No -2)

in absence of target, and :¥(:\r/t, NO "2) in presence of target. Hence, the SNF( is given bv

N#/_ = x/_l,/a i.e. amplified by a factor of _. In other words, a signal with

SNR of S/v_ integrated over _\; frames could yield the same rate of false alarms and mis-

detections as one would get using a single observation with SNR of S. Hence, the SNR.

required for detection reduces by _ when N frames are added. The same result is true for

averaging of N frames, since the signal as well as the noise would be reduced by a factor of

N.

2.3 Pre-processing

Before any other algorithms can be apt)lie(I, t)re-processing should be performed on the input

images to suppress the ba.ckgroulM. The following apt)roaches were used for pre-processing

the inlages.

2.3.1 Low-stop filter

In the case of an image with little or no chltter, a low-stop filter which subtracts from

every pixel, the local average of the neighborhood of that pixel effectively suppresses the

background intensity. This filter can be implemented by convolving the image with a 2-D

mask corresponding to the filter. Since the amount of computation increases with the mask

size, a small sized mask was used in conjunction with the wramid approach described in

Section 2.4 to simulate the effect of a large sized mask.



2.3.2 Morphological filter

If the background has significant clutter, the low-stop filter is not as effective for removing it.

A morphological filter [6] can remove large sized features (usually clutter), while retaining

small sized features (usually targets).

The gray-scale morphological ol)erations of dilation (®) and erosion (O) are defined as:

(f • m)(x, !1) : Inax {f(.r - :r' y - y') + m(x', _/)} (2.7)
(:r',_')E m

(f O m)(x, y) = rain {.f(:r + :r', y + y') -m(x', y')} (2.8)
(:/,,_/) E-_

where m is the mask using which the nlorphological operation is performed, and f is the

image which is considered to have a default value of -oc outside its domain. Morphological

closing and opening can be define(l using the above ot)erations as:

(.f. m) = (f • m) 0 m __.f (2.9)

(f o m) = (f 0 m) • m, _<.f ('2.1O)

A difference between the original image and its morphological opening, known as the top-

hat transform outputs small-sized positive targets i.e., bright targets in dark backgroun(l.

On the other hand, the difference between the morphological closing and the original image,

known as the bottom-hat transfi)rm outputs negative targets i.e., dark targets in bright

background. Each of these images are non-negative, and can be separately used to detect

targets.

A single mask for these nlort)hological operations gives undesirable outputs for jagged

boundaries of large features. Hence, horizontal mask mx and vertical mask m_ were used

separately as proposed by [6]. These masks are of length 5 with origin at. the center of the

mask, with all the pixels having the default value of zero. The outputs are given by:

F+ = F- max{Fo m,_,Fo my}

f" - F + rain{F* m_, F, m u}

(2.11)

(').12)

2.4 Spatial integration

To detect targets of a number of different sizes and velocities, and to amplify the SN12, the

target pixels in a given image can be integrated by forming an image pyramid. For this

purpose, the following basic operations are used:



1. Low-pass filter (LP or LP): Convolves the image in :r and y directions with tile masks

m, = rn v = [1, 3, (3), 1]/8, or their mirror itnages. The parentheses denote the origins

of the masks.

fLp(X, 9) = _ _-_.f(x- X',.q-- y') m,(X') my(y')
xt yz

fTP("r,U) = Z Z .f(:r + :r',y + y')mx(X')my(y') (2.13)
2:1 yt

2. Down-sampler (DS): Selects even numbered pixels in the input image to give au image

with half the resolution.

fDs(z,y) = f(2x, 2y) (2.14)

3. Up-sampler (/Joe): Forms tile output image by putting the input image pixels in even

numbered positions, and zeros in odd numbered positions. The image is scaled by 2 to

maintain the image intensity during subsequent low-pass filter step.

fv.s'(:r,y) = 2f(x/2, y/2) when .r, !1 are even: 0 otherwise (2.15)

These steps are combined to fl)rm two tyt)es of operations:

° Low-pass down-sample ot)eration (LP --+ DS): Decreases the resolution of the image

by two. Low-pass filter prevents aliasing of high frequencies in the image by suppressing

them.

, Up-sample low-pass operation (US _ LP): Increases the resolution of the image by

two. Low-pass filter slnoothes the output of the up-sampler (containing zeros at. odd

pixels) to produce the effect of interpolation. In this case, the mirror image masks are

used to compensate the asynlmetry in tile masks.

Tile above operations can be used to combine pyramid formation with low stop or mor-

phological filtering by using tile system shown in Figure 2.1. Images pyr[i] are formed t)y

successively applying low-pass and down-sample operations on the original image. These

images can be directly used as inputs to the mort)hologieal filter to detect targets at differ-

ent resolutions. Images pyr'[i] are forined by successiwqy applying up-sample and low-pass

operations to the lowest resolution image pyr[rz], where 7_ is the number of pyramid levels.

These operations remove the high frequency components of the original image. Low-stop

filtered images are given by Is[i] = pyr[i]- pur'[i], and retain only the higher frequency

components not subtracted out by p!lr'[i].



....

Figure 2.1: Spatial integration using pyramid construction: LP or LP: low-pass filtering

with original mask or its mirror image, DS: down-sampling, US: up-sampling. The pyramid

images at stage i = 0... are (l(moted I)y pyr[i]. Low-stop filtered images are obtained the

by subtracting the corresponding up-samI)led pyramid outputs pyr'[i] from pyr[i] and are

denoted by ls[i].

In this way, a hierarchy of images, each with half the resolution of the previous one is

formed. The size as well as the velocity of the object in the image scales as the resolution is

lowered. There is a particular resolution at which the object occupies no more than 2 to 3

pixels in length and width, which would be optimal for detection of the object.

2.5 Temporal integration

As shown in Section 2.2, integration of pixels corresponding to a target results in amplifi-

cation of the target SNR, an(l increased reliability of detection. Depending on the image

motion of the target, the following approaches can be used for integration of target pix-

els over a number of image frames. The performance of these approaches is characterized

experimentally and th(_oreti('allv in Chat)ters 3 and 4, respectively.

2.5.1 Recursive temporal averaging

In the case of objects on a collision course [14] the image motion is very small. Hence, pixel

wise temporal averaging of a sequence of images would improve the detection perfl)rmance.

However, direct use of teml)oral averaging results in infinite memory. To give a higher weight

to more recent observations, a recnrsive filter can be used. The output F(k) at time k for



any pixel is recursively obtained from the input ./(k) at. the same pixel using the fi)llowing

steps:

1. Initialization: F(0) = 0

2. Recursion: F(k) = f(k) + aF(k- 1)

where a is a forgetting factor 1)etween 0 (flfll forgetting) and 1 (no forgetting).

2.5.2 Dynamic programming

In the case of moving targets, the temI)oral averaging filter does not iml)rove the detection.

A dynamic programming algorithm [2] is more effective in detection of moving targets. The

algorithm is based on shifting the images before averaging them so as to align the target to

be detected. Since the velocity of the target could be arbitrary, the velocity space (_l, _,) is

discretized within the range of possible target velocities. A set of intermediate images F,

each corresponding to a particular veh)eity (u, v), are created recursively using the folh)wing

steps:

1. Initialization: For all pixels (x, y) and all velocities (u, v), set

FOr, y; _, _,;O) = 0 (2.16)

2. Recursion: At time k, set

r(x,y;u,v;k)=.f(x,_/;k)+et max F(:c- -x',y v U';(*'_')_Q . -- --. _l,_,:k- 1) (2.17)

where

Q __-- {(3:r i I_ r _ 3J ,t t _ t!I )lxmi,, < < < < }-- 2'max ' _min -- yt • max

3. Termination: At time K, take

(2.18)

where

F,,_,,,(x, !/; K) = max F(x, y; u, v" K) (2.19)
(u,+,)¢ P ' _'

P = {(,,, ,,)1,,,.,,,,_<,, _<,,m,,., ,,..,, _<,, _<.,,.,o.} (2.2o)

The maximum operation in the recursion step is performed using the set Q, which ens,u'es

that the targets with velocities which do not fall on the grid are not missed. The set of

discretized velocities denoted by P deternfines the range of target veh)cities that ('an be
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detectedby the algorithm. The final maxilnuln in tile terlnination stepcombinesthe targets

correspondingto all the velocities. The number of elementsin P and Q are denoted by p

and q, respectively.

In the recursion step, a maximum is taken over q pixels. If these pixels are all noise

pixels, they are more likely to give a false alarm if q is large. Thus, the rate of false alarms

increases with q. To get better performance, a smallest possible q shonld be used. The value

of q = 4 has been used in our experiments corresponding to a 2 x 2 neighborhood, giwm by:

Q= {(0, 0), (-1,0), (0, -1), (-1, -1)} (2.21)

This ensures that the targets having fiaetional velocities are not missed. The asymmetry in

this neighborhood is compensated by choosing u,,i,_ = u,,,_,. - 1 and v,,i,, = _%,,.,.- 1. For

the case of u,,,_, = v,,_, = 1, p = 4 and P is given bv:

P = {(O, O), (1, 0), (O, 1),(1,1)} ('_).22)

The algorithm then detects targets with a maximum velocity of 1 pixel per fraine. However,

when spatial integration is performed prior to dynanfic programming, targets with larger

sizes and velocities can be detected.

On the other hand, if P = Q = {(0,0)} so that p = q = 1, the algorithm reduces

to recursive temporal averaging, which gives the best performance for stationary targets.

However, the performance of temporal averaging sharply degrades if the target is moving,

whereas that of dynamic programming algorithm does not.

The output of the dynamic programnfing algorithm is an image, with large values at

positions where the target strength is high. However, the pixels in the neighborhood of the

target will also have a significantly large value. This (:an be resolved bv using non-maximal

suppression, where the output is smoothed using a Gaussian filter with cr = 1.0, and each

pixel which is not a local maxinmm in its 3 x 3 region is set to zero. After this, only the pixels

which are local maxima remain, which can be thresholded to obtain the target locations.

It should be noted that separate processing should be performed if the targets are negative

i.e., dark targets on a bright background. In the case of low-stop pre-processing, this is

done by using the negative of the pre-processed image, whereas in the case of mort)hological

pre-processing, both original minus open and closed minus original images are processed

separately.

11



2.6 Composite system

The above mentioned algorithms have t)een combined to form a composite system for target

detection. The steps that form this (:omposite system are:

. Temporal Averaging: This step is I)erf()rmed first in the case of objects in a uniform

background, having a very small image motion, such as those on a collision or near-

collision course. In such a case, temporal averaging improves the SN12 and reduces the

processing rate required for subsequent steps.

, Pyramid construction with low-stop or morphological filtering: In this stet), a pyramid

is constructed to accommodate different sizes and velocities of objects. For pre-

processing the images, low-st.op or morphological filtering is performed at each t)yralnid

level to remove background intensity. Low-stop filtering is more effective in low clutter

situations, whereas morphological filtering [6] is more effective in suppressing back-

ground clutter due to clouds and ground.

, Dynamic Programming: A dynamic programming algorithm [2] is t)erf()rme(t on t)r('-

processed frames to integrate the signal over a number of frames bv taking the target

motion into consideration. Non-maximal suppression and thresholding are then per-

formed on the output.

It should be noted that one or more of these stet)s can be bypassed so that any of the basic

algorithms described above can be tested individually using the same system.

2.7 Results using analog camera

The above target detection algorithms were applied to real image sequences obtained from

NASA. Figure 2.2 (a) shows an image from the sequence with the target aircraft flying away

from the host aircraft. The sequence can be played in reverse to simulate the air(Taft on a

collision course. Since the aircraft on a collision course have a small image motion, temt)oral

averaging was the optimal detection algorithm in this particular case. The aircraft was at

a distance of approximately 4 nautical miles (7.4 kin), and was barely visible in a single

image. Low-stop filter was applied before temporal averaging to remove the near-mfiform

background. After temporally averaging and thresholding, the aircraft was detected as shown

in Figure 2.2 (b). Dynamic programnfing algorithm was performed on a sequ(,nce of images

12
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Figure 2.2: Target detection using t.emporal averaging: (a) Original image with a distant

contracting target at 4 nautical miles. The target is approximately in the middle of the

image. However, due to degradation of image quality, it is very faint. (b) Detection of

the distant contracting target using low-stop filter t)re-processing, temporal averaging and

thresholding. A false alarm in the mid-left area is most likely due to a smudge on the camera.

(after applying low-stop filter as pre-processing) in which an aircraft was flying from right to

left across the image as shown in Figure 2.3 (a). Dynamic programming algorithm detected

the aircraft with a low rate of false alarms. However, the target was dilated by the use of this

algorithm. Clutter removal using morphological filtering was also explored. Figure 2.4 (a)

shows a small aircraft flying in the middle-right part of the image. The image was actualh'

obtained by averaging 10 motion compensated images from an image sequence, in which an

aircraft was fying on the collision course. Application of morphological filter removed most

of the clutter due to edges of large-sized features. This aircraft which was on a collision

course, was retained. However, other small-sized features were also retained, resulting in a

number of false alarms. The result is shown in Figure 2.4 (b).

Chapter 3 presents a systematic performance characterization for temporal averaging a.s

well as dynamic programming using statistical iinage models for digital cameras. It was

observed that the algorithms performed very well when the background was clear. However,

the performance degraded severely in presence of chltter. In the case of cluttered images,

pre-processing using morphological flter worked better than that using low-stop filter. Most

of the clutter was removed, but small sized clutter, especially due to specular reflection fi'om

water remained. Finally it was observed that the mHnber of false alarms after applying the

13
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Figure 2.3: Target detection using dynamic programming: (a) Original image frame with a

translating target. (b) Location of the detected target using dynamic programming (following

a, low-stop pre-processing st,ep).
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Figure 2.4: Detection using morphological processing: (a) An average of ten motion-

compensated frames of an image sequence. The aircraft, is in the middle-right part of the

image. (b) Detection using morphological filter. False alarms due to other features are also

seen.
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algorithm, in general, was reduced but still significant.

2.8 Data collection using digital camera

The real data that was used for our previous work was captured using an analog camera

and recorded using NTSC video, thus containing additional noise that should not be present

when a digital camera is used on the actual flight. Hence, the performance of the algorithms

should be characterized without the undue interference from video noise. For this tmrpose,

a. system was designed to capture image sequences from an aircraft using a digital camera.

and record them digitally on a disk. The camera used was 1K x 1K Kodak MegaPlus ES1.0

camera with the output at approximately 30 frames per second and a gray scale resolution

of 8 bits. Hence, a bandwidth of 30 MBytes per second and a storage of 108 GBvtes per

hour of recording is required.

To cat)ture the video image sequences with these large bandwidth and storage require-

ments, as well as perform the image processing operations in real time. a real-time image

processing system with pipelined image processor called DataCube MaxPCI was procured.

This system is a cost-effective way to meet high-throughput low-latency demands and has

become popular among researchers working on real-tinw vision problems. The New Technol-

ogy Disk (NTD) available with the DataCube MaxPCI has the required ability to perform

high-speed digital image recording. NTD is a Redundant Array of Inexpensive Disks (R AID)

that enables high-speed lossless digital image recording and playback. The image data can

be recorded and played back at a real-time frame rate (overall 40 MBytes/see).

Image data has been obtained from flight tests conducted at NASA Langley Research

Center. A sample image captured using this system is shown in Figure 2.5. Work on

implementing the detection algorithms on the Dat.aCube hardware using these images is

described in [11]. Detection of objects crossing the aircraft, (instead of those on a collision

course) was performed on the DataCube system in real time. The algorithms used for this

purpose are described in Chapter 7.
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Figure 2.5: An image captured from an aircraft usin_ tile digital recording system. The

target aircraft is ill the middle-right part of the image.
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Chapter 3

Performance Characterization of

Detection Algorithms

The most, common tool used to characterize the performance of a detection algorithm is a

plot of its probability of mis-detection versus its probability of false alarin, as s()me tuning

parameter is changed. This plot is commonly known as the "receiver operating curve" of lhe

system, or ROC, for short. Although ROCs are useflll to represent, the system performance

as a parameter is varied, they have several limitations. One disadvantage in using R()Cs

is due to the fact. that only one parameter (:an be varied at a time. Thus, if the effect of

variations of inultiple variables needs to be studied, a different curve nmst be determined

for each of these variables making the analysis of the system performance more difficult. A

second disadvantage is that it is difficult to compare ROCs for different algorithms since they

may take different variables into account. Finally,, obtaining ROCs is an expensive process

where factorial experilnents must be carried out to determine the system performance at all

performance levels with the probability of false alarms ranging from zero to one.

In Kanungo et al. [10], a methodology which was adapted from the psychology literature,

and is discussed next, was proposed as an alternative characterization tool to smnlnarize nml-

tiple ROCs into a single curve, solving the problems described above. This chapter describes

how to use this methodoh)gy to characterize the 1)erformances of the algorithms described

in Chapter 2. The performance of the dynamic programming algorithm is compared against

that of temporal averaging, aim thresholding of a single image frame.
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Figure 3.1: Steps for perfi)rmance characterization: (a) Step 1: Obtain tile frequency dis-

tributions of the evidence measure for images with and without target. (b) Step 2: Obtain

the ROC. (c) Step 3: Determine the ol)timal operating t)oint using either the expected cost

or the probability of detection given the probability of false alarm. (d) Step 4: Plot the

threshold value corresponding t.o the optimal operating point versus a variable of interest.

3.1 Performance characterization methodology

For the sake of completeness, the methodology for performance characterization proposed

in [10] is described here. Consider a detection algorithm that must report whether a given

image has a target or not. Typically, the algorithm would compute some measure of evidence

of target presence and compare it to some given threshold value. Whenever the evidence

measure is greater than the given threshold, a target would be reported. The performance

of the algorithm is affected by several factors, such as image contrast, target size, complexity

of the background, etc. The effect of variations of these variables on the overall performance

can be measured through the use of equivalent effects of some critical signal variable by

following the four steps described below.

1. Obtain evidence distributions: The first step consists on estimating distributions of

evidence measures, one for images with target and another for images without target,

18



asillustrated in Figure3.1(a). This estimation isdonenon-parametricallybyrandomly

presentingthe algorithm with imagesof both types and recordingthe frequencyof tile

evidencemeasurevaluesreported by the algorithm, using a histogram. It should be

noted that the frequencydistributions areusedhereonly for estimating the falsealarm

and mis-detectionrates. The evidencemeasurewhich is thresholdedmay or may not

be derived from thesedistributions accordingto Bayes' rule. Hence,the performance

of optimal aswell asnon-optimal detectorscanbe characterizedby this approach.

2. Obtain ROCs: Tile second step consists on constructing an ROC as the one shown in

Figure 3.1 (b) by varying the threshold used by the algorithm to compare against the

computed evidence measure. False alarms occur when a pixel in the given image does

not contain a target, but the evidence measure is greater than the threshohl Iwing

used. Mis-detections occur when the given image contains a target, but the evidence

measure is less than the threshold. The probabilities of false alarms and mis-dc_tections

can be approximated by their frequency ratios:

Number of false alarms
P(FA) = P(H,[Ho)--

Total number of input pixels without target

Number of mis-detections

P(MD) = P(HolH_) = Total number of targets in input images

where H0 and H1 denote the hypotheses corresponding to the absence and presence of

a target, respectively.

3. Determining the optimal operating point: The optimal operating point (or its corre-

sponding threshold value) can be specified in different ways, depending on how nmch

prior knowledge is available. If the prior probabilities and costs are known, the optinml

operating point can be defined as the one minimizing the expected cost. Let Cl0, C<j_,

C11, and Coo, be the costs of a false alarm, a mis-detection, a correct detection, and a

correct rejection, respectively. The expected cost is then given by:

E[C] = [P(HolHo)Coo + P(H11Ho)ClO] P(Ho)

+ [P(HolHI)Cm + P(HolUj)Cli] P(Sl) (3.1)

The optimal operating point is found by minimizing E[C] with respect t.o the threshold

to be used by the algorithm. In the most likely case when the costs are di_('uh to set.,

an alternative way to define the required operating point is to use the Neyman-Pearson

criterion -- i.e., to maximize the probability of detection for a given probability of false

alarnl.
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Independentlyof which definition is used,the optimal operating point dependson tile

signal to noise ratio (SNR) in the input image. For example, increasingthe target

contrast results in an increaseof the SNR and, hopefully, in an improvementof the

algorithm performancefor a given thresholdvalue. The optimal operating points for

different SNRscan be found by repeating steps 1 and 2 for the correspondingSNR

valuesand determining the optimal point for eachof the resulting ROCs. Once this

is done, a graph of the expectedcost or the probability of detection versusSNR can

be plotted, dependingon which definition of operating point is being used. This is
illustrated in Figure 3.1(c). Finally, let SNRT and T be the SNR and the associated

threshold values for the optimal operating point for a given level of performance, as

shown in the figure. The level of performance is specified by either a desired expected

cost of classification or a desired probability of mis-detection, again, depending on

which optimal criterion is used.

. Performance analysis with respect to variables of interest: Besides SNR, other factors

affect the algorithm performance and merit study. Examples are the size of the target.

the amount of target motion on the images, and the amount and nature of image

clutter. In order to study these effects, steps 1 to 3 are repeated for different values of

variables representing these variations. These results are then summarized in a graph

where the threshold T determined in step 3 is plotted against the value of the variable

of interest, as shown in Figure 3.1(d). A fairly flat plot indicates that the effect of the

variable being considered on the optimal operating point of the algorithm is negligible.

On the other hand, a steep plot indicates that the variable has a high impact on the

performance.

It should be noted that a smaller SNR threshold T implies better performance, since

weaker targets can be detected with the same given rates of false alarms and mis-detections.

Measuring the performance in terms of the SNR threshold makes it easier to measure and

compare the performance of different algorithms, or the same algorithm with different pa-

rameters. This is because the variables, such as the false alarm and mis-detection rates are

eliminated from the curves, making place for other parameters.
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3.2 Experimental protocol

In this section, the experimental protocol used to characterize the performance of the target

detection algorithms, is described ill detail. Tile protocol consists of tile following compo-

nents, specifying how to

1. Generate images of simulated targets,

2. Apply the detection algorithm,

3. Estimate the rates of false alarnls and ntis-detections (ROCs) for different sets of

parameters, and

4. Characterize the algorithm performance 1)v condensing tile ROCs into a t)erformance

curve.

3.2.1 Image generation

In order to characterize the performance of the detection algorithm, it is applied to sequences

of synthetic images with and without targets. While the images with targets are used to

estimate the mis-detection rate, the images without targets are used to estilnate the false

alarm rate. The images (:an have the following different tyt)es of backgrounds:

1. Synthetic noise from camera model: The ba('kgronnd is assumed to have a constant

value Abg. The noise is artificially simulated, using the camera noise xnodel.

. Real noise from a digital camera: Tile background images are taken from a se(tuenee

of images obtained from a digital camera looking at a scene with constant intensity

such as clear sky, or white paper.

, Real background an from analog camera: The t)ackground images are obtained using

a sequence of images with significant clutter. The sequence, which was l)rovide(t bv

NASA, was captured using an analog camera mounted on a flying aircraft. Figure 3.2

shows a typical frame of this sequence.

Generation of image sequences

To estimate the number of false alarms, the background images themselves, without any

addition of targets are used directly. The size of these images is _'\_ x J\_u. For estimation of
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Figure 3.2: A sample image from the real backgroundsequenceprovided by NASA. The

image sequence was taken from all analog camera mounted on an aircraft.

the rate of mis-detections, simulated targets are inserted in tile background images generat<_<l

as described below. For each simulation, a target file is created having information on the

position, velocity, size, amplitude and each target to be placed in an image. The image size

is taken as :\r x :\:u' The numt)er of targets to be inserted in every image is .\5,,,,_. The

target trajectories are generated in such awav that the detection of one target does not

interfere with the detection of another. This is accomplished by drawing a window around

each target trajectory. The next generated trajectory is valid only if the window aromM

it does not overlap with the windows around the previously generated targets. Otherwise.

the procedure is repeated by generating another trajectory, until the total mmfl)er of vali(t

trajectories is :\_,.q.

The velocity (i_, i_) of the targets is uniformly distributed so that -_,,,,:r <_ ITr _< u,_,:_.

and -v,,_, < I.]j _< v,,_x. The position of the targets is specified fl)r the last frame i.e.

when the detection is completed. The position of the target in other frames is given by

(x - t;At, y - l;At), where At is the time-interval between the given frame and the last

frame.

A target can be a point target, or have a specified height and width. The size of the target

is given by s, x sy. The target amplitude is given by .4. For point targets, the amplitu(le

corresponds to the contrast of the pixel it occupies, with respect to the backgromM. However,

for an extended target, the contrasts of all the occupied pixels are given by the product of

the target amplitude and the fraction of the area in the respective pixel that is covered I)y
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the target.

Figure 3.3 (a) shows the trajectories of simulated targets to be added to an image, and

Figure 3.3 (b) shows a zoomed part on a portion of the image. The end of the trajectories

are marked by blobs. The black box around the target denotes the region where another

target cannot be present, to reduce the interference between the targets.

Once the file describing the targets is created, an image sequence of 3JfT_,,c frames is

generated. For each frame, the position of the targets are calculated, and the targets are in-

serted accordingly. For point targets, the amplitude is added to the background image in the

target position pixel. For extended targets occupying a number of pixels (fully or partially),

the product of the amplitude and the fractional occupancy is added to the background image

at that pixel.

Addition of noise

Two types of camera noise [8, 11], the Fixed Pattern Noise (FPN) and the temt)oral noise

are added to the sequences created using synthetic backgrounds. FPN has two c()mt)onents.

additive and multiplicative. The t)arameters of this noise change from pixel to t)ixel, t)ut do

not change with time. The parameter values for each pixel are determined a priori using the

camera, and stored as images. On the other hand, the temporal noise is completely random.

and is generated separately for each fraine. The temporal noise approximately fl)llows a

Gaussian distribution with a variance of:

2
O'nois e = _1,!0 q'- IU 11

where I is the expected gray value of the pixel, and w0, wl are the parameters of the particular

camera. However, since the background amplitude A@ is constant for the experiments with

simulated noise, and the target amplitude A << Ab.q, we have I A + Ab9 A@ and' _ _ CYT_oisc

is approximately, constant, given by:

2
O-no,s e _ WO -[-II_lAbg

Hence, the noise can be approximated as Gaussian noise with a constant standard (teviatioll

of cr,_oi_. The values of the parameters for the particular camera were estimated [11] as

w0 = 0.171 and Wl = 0.0056. For background ,4 = 128, this gives CS_ois_= 0.942. The image

is quantized to give the output in byte format.
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Figure 3.3: Detection using dynamic programming: (a) Simulated targets trajectories• There

are 200 targets, and the image size is 960 x 960. The end of the trajectory is marked by

a blob. The targets are separated so that there the interference between them is reduced.

The black box around the target denotes the region where another target cannot be present•

(b) A zoomed part of the target trajectory image• (c) The dynamic programming output

of a typical experiment (before non-maximal suppression). (d) Zoomed part of the output.

(e) The dynamic programming output of the same experiment without adding targets - i.e.,

false alarms. (f) Zoomed part of the output.
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3.2.2 Algorithm application

The target detection algorithm whose performance is to be characterized is applied to each

simulated image sequence. In tile cases of synthetic images, and digital camera sequences,

fixed pattern noise (FPN) can be corr¢,(:t.ed in advance t)y using pre-computed parameters

of FPN for each pixel. However, these parameters are perturbed by a random amount

corresponding to their estimated (:()variance, to model the error in estimating these val-

ues. Experiments are performed without and with correction of FPN, and the results are

compared.

According to the type of background used, prel)ro(:essing in the form of a low-stop filter or

a morphological filter are performed before applying dynamic programming. After dynamic

programming is applied, non-maximal suppression is l)erforme(l to ensure correct counting of

false alarms and mis-detections. The output (before non-maximal suppression) of a tyt)ical

experiment with 200 targets is shown in Fignre 3.3 (c) and ((t) where the latter shows a

zoomed part of the output.

3.2.3 Estimation of false alarms (FA) and mis-detections (MD)

The algorithm to be characterized is applied on the image sequences with as well as without

targets. The sequences without targets are used to estimate the false alarm rate, whereas

the sequences with targets are use(1 to estimate the mis-detection rate.

For the false alarm rate, the histogram of the output image is obtained. Using this

histogram, the false alarm rates for different thresholds can 1)e obtained. For the mis-

detection rate, only the pixels in a specified window of 5 × 5 pixels around the specified

target position are checked. For each such window corresponding to a single target, the

maximum value of the algorithm output is taken. A histogram of these maximum values is

formed, and processed to obtain the mis-detection rates for different thresholds. The false

alarm and mis-detection rates are average(t over a numl)er of simulations NFA and N._ID,

respectively.

The number of simulations to test can be specified so that the standard deviation in the

estimate of the false alarm or mis-detection rate is below a given value. This can be seen

by observing that the occurrence of an event such as a false alarm or a mis-detection can

be modeled as a Poisson process and therefore the variance of the total number of events is

equal to the mean. Thus, if n events are observed, the standard deviation of the absolute

error in the number of events is _, and that of the relative error is 1/v,'n.. For example, for
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n = 10 events, the error a is 3.2, or 32 % of the number of events. This error estimate can

be confirmed by measuring the variance of these rates across the simulations.

3.2.4 Performance characterization

Using the estimated false alarm and mis-detection rates, the receiver operating curve (ROC)

can be plotted showing the rate of mis-detection against the rate of false alarms. The ntis-

detection rate for a specified false alarm rate (FAT) is noted from the curve. The simulations

are repeated for a number of signal amplitudes A. The ratio of this amplitude to noise level

corresponds to the SNR. The value of the signal amplitude for a specified mis-detection rate

(MDT), and the above false alarm rate is obtained. This is considered as the threshold signal

value (AT). The number of simulations used is at least NrA = IO/FA:r in the case of false

alarms and NMD -_- IO/MDT in the case of mis-detections, so that for the rates FAT and

MDT, an average of at least 10 events would be observed, giving an error (7 of at most 32

%. Due to constraints on the execution time, larger number of experiments were not used,

although they would be desirable for reducing this error.

Other parameters, such as the size of the target, can be varied one at a time, an(t the

variation of AT can be plotted against the respective parameter to determine the effect of

the parameter on the algorithm performance.

3.3 Results

The target detection algorithm was tested on 3 categories of images as described in the

protocol. The results are shown and compared in the following sections.

3.3.1 Synthetic noise from camera model

In this case, the noise was synthetically generated using the noise model of the Kodak

Megaplus ES 1.0 digital camera. Targets of varying size were added for mis-detection anal-

ysis. Experiments without and with correction of FPN were performed.

Figure 3.4 (a) and (b) show the plots of the false alarm and mis-detection rates, re-

spectively, against the threshold value, for experiments without FPN correction. The mis-

detection rates are shown for a number of signal amplitudes for 1 x 1 targets. The mis-

detection rate is measured as the ratio of the average number of mis-detections, to the total

number of targets in a simulation. However, the false alarm rate is measured as the average
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Table3.1: Table of parametersusedfor tile experimentswith the following imagecategories:

(1) Synthetic noise from camera model, (2) Real noise from a digital camera, (3) Real

backgroundfrom an analogcamera.

Description Parameter Category

(1) (2) (3)

hnage x size

Image y size

No. of targets

Maximum x velocity

Maxinmm Y velocity

x size

y size

Amplitude

N.

.X't°r9

I t _n a x

:l!ma x

Sx

8y

A

960

960

2O0

1

1

0.5 to 2

0.5 to 2

1.0 to 15.0

960

960

200

1

1

2

2

1.0 to 6.0

Number of frames

Background value

Noise standard deviation

Forgetting factor

Number of FA simulations

Number of MD simulations

Threshold FA rate

Threshold MD rate

._rf rame

Abq

Gnoise

(t

N_ID

FAT

MDT

32

128

0.942

15/16
500

50

0.02

0.001

32

__ 200

not used

15/16
1

10

10

0.01

640

480

50

1

1

2

2

10.0 to 70.0

32

not used

not used

15/16
1

10

10

0.01
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number of falsealarms per simulation, insteadof the ratio of the number of falsealarms to

the total numberof pixels. This is doneto givea better idea of the algorithm performance.

Figure 3.4 (c) showsthe plot of mis-detectionrate against falsealarm rate for different

amplitude valuesfor 1x 1targets. The point of thresholdfalsealarm rate FAr is set to 0.02

false alarms per simulation, which corresponds to a total of 10 false alarms for NF.a = 500

simulations. Figure 3.4 (d) shows the plot of mis-detection rate against the amplitude vahles

for the above rate of false alarms. The AT for the threshold mis-detection rate of MDT is

interpolated, and marked as a circle. The MDr is set to a probability of 0.001 per target,

which corresponds to an average of 0.2 mis-detections per simulation for a simulation with 200

targets, or a total of 10 mis-deteetions for NMD = 50 simulations. The corresponding graphs

for the case where fixed pattern noise comi)ensation was applied are shown in Figure 3.5.

The above experiments are repeated for other sizes of targets, and the Ar calculated from

these is plotted against the size of the target. Resulting plots for the experiments without

FPN correction are shown in Figure 3.6 (a) for square targets (size x x x) and in Figure 3.6 (b)

for rectangular targets (size 1 x :r). The corresponding results for the experilnents with FPN

correction are shown in Figure 3.6 (c) and (d). The threshold amplitudes for various sizes

are tabulated in Table 3.2. It is seen that larger targets require smaller signal amplitudes

for detection implying better performance. Silnilarly, the signal amplitndes required when

FPN correction is applied are much smaller than those when the correction is not applied,

implying better perfornmnce in the former case.

Table 3.2: Results of dynamic programlning algorithm on simulated image sequences without

and with FPN correction. Threshold amplitudes are shown for false alarm rate of 0.02 per

simulation and mis-detection rate of 0.001 per target.

Size No FPN correction With FPN correction

lxl

lxl.5

lx2

1.5 x 1.5

2x2

14.85

11.43

9.38

10.49

6.35

4.72

3.48

3.10

2.55

2.04
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Figure 3.4: Results for camera noise model without FPN correction: (a) Plot of FA rate

(average number per simulation) against threshold (b) Plot of MD rate against threshold,

for a number of signal amplitudes (higher amplitudes towards right) for 1 x 1 targets. (c) Plot

of MD rate against FA rate (for marked amplitude). The data points are marked as crosses.

The MD rate when FA rate is FAT = 0.02 per sinmlation is interpolated, and plotted as

circle. (d) Plot of MD rate against ainplitude for FA rate of FAw = 0.02 per simulation.

The value amplitude when MD rate is MDr = 0.001 per target is interpolated and marked

as a circle.
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Figure 3.5: Results for camera noise model with FPN correction: (a) Plot of FA rate (average

number per simulation) against threshold (b) Plot of MD rate against threshold, for a number

of signal amplitudes (higher amplitudes towards right) for 1 x 1 targets. (c) Plot of MD rate

against FA rate (for marked amplitude). The data points are marked as crosses. The MD

rate when FA rate is FAT = 0.02 per simulation is interpolated, and plotted as circle.

(d) Plot of MD rate against amplitude for FA rate of FAT = 0.02 per simulation. The value

amplitude when MD rate is 31DT = 0.001 per target is interpolated and marked as a circle.
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Figure 3.6: Performance curves for simulated targets: (a) Plot of amplitude against the

target, size (x x 3t:) for ext)eriments without, FPN correction. The data points are marked as

crosses. (b) Plot of amplitude against the target size (1 x :I:). (c) and (d) Corresponding

plots for experiments with FPN correction.

31



3.3.2 Real noise from a digital camera

In this case, instead of synthetically generating the noise, background images captured using

the Kodak Megaplus ES 1.0 digital camera looking at the sky were used. Targets of size

2 x 2 pixels were synthetically added for the mis-detection analysis. Experiments without

and with correction of FPN were also performed.

The false alarm threshold was set FA,r = 10 per simulation, resulting in a total of 10

false alarms for NFA = 1 simulation. The mis-dete('tion threshold was set to MDT = 0.01

per target, corresponding to 20 mis-detections for _\:_tl) = 10 sinmlations with ,¥t_g = 200

targets. Unfortunately, the performance at lower rates of false alarms and mis-detections

could not be reliably estimated because of the limited number of background images available.

However, one can extrapolate the false alarm and mis-detection rates to study the behavior of

the algorithm for lower rates. Due to the normal distribution of noise, even a small increase

in the threshold reduces the false alarm and mis-detectioll rates dramatically. Hence, a

somewhat higher target amplitu<te can be expecte<l to reduce these rates to an acceptable

level.

In the case of the experiments without FPN correction, the plot of ntis-detection rate

against false alarm rate for different levels of target amplitude is shown in Figure 3.7 (a).

The plot of mis-detection rate against SNR for false alarm rate of FAT = 10 per simulation

is shown in Figure 3.7 (b). The eorresl><mding plots for the experiments with FPN correction

are shown in Figure 3.7 (c) and (d). The target strength required for detection at the specified

rates of false alarms and ntis-detections are marked by circles in Figures 3.7 (b) and (d).

It can be seen that the target strength required when FPN is not corrected (AT = 3.22)

is higher than that required when FPN correction is applied (AT = 1.86), implying better

performance in the latter case.

3.3.3 Real background an from analog camera

In this case, a real aerial background, obtained from an analog camera used during a flight

test was employed. Targets of size 2 × 2 pixels were synthetically added for mis-detection

analysis.

In order to suppress the background, low-stop and morphological pre-processing were

separately applied, and the results compared. Since the background was cluttered, a much

higher signal was required for satisfactory detection. Even then, the false alarm rate does not

reduce sufficiently, thus showing that more post-processing would be required after applying
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Figure 3.7: Results for real noise from camera for 2 x 2 targets: (a) Plot of MD rate against

FA rate (for marked amplitude) for images without FPN correction. The data points are

marked as crosses. The MD rate when FA rate is FAr = 10 per simulation is interpolated,

and plotted as circle. (b) Plot of MD rate against amplitude for FA rate of FA,r = 10

per simulation. The data points are marked as crosses. The value of AT where MD rate is

MDT = 0.01 per target is interpolated and marked as a circle. (c) and (d) Corresponding

plots for FPN corrected images.
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the algorithm. However,sincetile numberof falsealarms (plus true candidates)would be

small after this processing,the tilne coInI)lexityof snbsequentalg()rithmswould be reduced

significantly. The techniqnesdescribedin Chapter 5 can be usedto separatethe remaining

backgroundclutter from the genuinetargets. Theseteclmiquesutilize the differencein the

imagetranslation and ext)ansionbetweenanobject on acollisioncourse,and the background
clutter.

The falsealarm thresholdwasset FAr = 10 per sinmlation resulting in a total of 10 false

alarms for NFA = 1 simulation. The mis-detection threshold was MDT = 0.01 per target,

corresponding to 10 mis-detections for -Y_tt) = 20 sinmlations with .\_a_g = 50 targets. Again,

unfortunately, lower rates for false alarm and mis-detection cannot be reliably estimated due

to the limited number of background images available.

The results for the morphological filter and the low-stop filter are shown in Figures 3.8 and 3.9,

respectively. It can be seen that the target strength required when the nmrphological filter

(AT = 17.8) is used is much lower than that required when the low-stop filter (AT = 57.8)

is used. The morphological filter is thus better, and the reason for this is that the morpho-

logical filter reduces clutter correst)onding to large features, whereas the low-stop filter does

not do this effectively. Howew'r, both result in much poorer performance than that obtained

with a digital camera with clear background.

3.3.4 Comparison with other methods

The performance of the dynamic t)rogramming algorithm was also comt)ared with other

methods such as simple threshol(ling on a single frame, and temt)oral averaging on the

same number of flames. The coml)aris(m was made using FPN correctioll on images with

simulated camera noise. The results of al)t)lying the dynamic programming algorithm, simple

thresholding on a single frame, and temt)oral averaging on image sequences with 2 × 2

moving targets are shown in are shown in Figures 3.10, 3.11 and 3.12 resl)ectivcly. Temt)oral

averaging was also applied on image sequences with stationary targets instead of moving

targets, the results of which are shown in Figure 3.13.

Similar experiments were performed with other target sizes. Table 3.3 shows the COml)ar-

ison the for these algorithms using various target sizes. The plots of the threshold aml)litudes

against target sizes are shown in Figure 3.14. Again, smaller threshold amplitudes imt)ly

better performance as explained before.

It can be seen that the performance of single frame thresholding, as well as temt)oral
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Figure 3.8: Results for real cluttered background for 2 x 2 targets using morphological filter

in the preprocessing: (a) Plot of FA rate (average number per sinmlation) against threshold

(b) Plot of MD rate against threshold, for a munber of signal ainplitudes (higher amplitudes

towards right). (c) Plot of MD rate against FA rate (for marked aml)litude). The data

points are marked as crosses. The MD rate when FA rate is FAr = 10 per simulation is

interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of

FAT = 10 per simulation. The data points are marked as crosses. The value of Ar where

MD rate is MDT = 0.01 per target is interpolated and marked as a circle.

35



False AJarm Rate

1o]

102 f _'_---_ ___ _

10_ I

10% 10 20 30 4O 50 6'0 70
Thr

(a)

10_

10

_10 _

10

size: 2x2jstop

f iF S- • /_ ,

/ /' ,,_ /

,,' ,,,' /_ /

/ I" ,/

r"

iI

[

j'

I /_ r" /
7' _' r i'

JJ_ J
5_ S5 _ m

10 2L ........ ,

0 10 20 30 40 50 60 70 80
Thr

(b)

size: 2x2,fstop
103

10° ]

10 _ _ , _

10 .............. t

10 1 100 102 10310'
FA

o 101

®

10_

size: 2x2,1stop

\

10 _ .......... J
50 52 54 56 58 60

Amplitude

(d)

Figure 3.9: Results for real cluttered t)ackground for 2 x 2 targets using low stop filter in

the preprocessing: (a) Plot of FA rate (average number per sinmlation) against threshold

(b) Plot of MD rate against threshold, for a number of signal amplitudes (higher amplitudes

towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The data

points are marked as crosses. The MD rate when FA rate is FA,r = 10 per simulation is

interpolated, and plotted as circle. (d) Plot of MD rate against alnplitude for FA rate of

FAT = 10 per simulation. The data l)oints are marked as crosses. The value of -4r where

MD rate is MDT = 0.01 per target is interpolated and marked as a circle.

36



averaging are much poorer than that of tile dynamic I)rogramming. However. if stationary

targets are used instead of moving targets, the performance of temporal averaging is slightly

better than that of dynamic programming, showing that temporal averaging is tile best

choice when the targets are stationary.

Table 3.3: Results of target detection algorithms on simulated image sequences with FPN

correction. Threshold amplitudes are shown for false alarm rate of 0.02 per simulation and

mis-detection rate of 0.001 per target.

Size Dynamic Single frame Teinp. Avg. Temp. Avg.

lxl

1.5 x 1.5

2x2

prog.

4.72

2.55

2.04

thresh.

23.03

10.68

8.17

(moving)

33.82

16.99

11.67

(st,at.)

4.63

2.11

1.65
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Figure 3.10: Results for camera noise model with FPN correction for 2 × 2 targets using dy-

namic programming: (a) Plot of FA rate (average number per simulation) against threshold

(b) Plot of MD rate against threshoht, for a number of signal amplitudes (higher amplitudes

towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The data

points are marked as crosses. The MD rate when FA rate is FAr = 0.02 per simulation is

interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of

FAr = 0.02 per simulation. The value of AT when MD rate is MDT = 0.001 per target is

interpolated and marked as a circle.
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Figure 3.11: Results for camera noise model with FPN correction for 2 x 2 targets I)y

thresholding a single flame. (a) Plot of FA rate (average number per simulation) against

threshold (b) Plot of MD rate against threshold, for a number of signal amplitudes (higher

amplitudes towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The

data points are marke<t as crosses. The MD rate when FA rate is FAT = 0.02 per simulation

is interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of

FAT = 0.02 per sinnllation. The value of AT when MD rate is MDT = 0.001 per target is

interpolated and marked as a circle.
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Figure 3.12: Results for camera noise model with FPN correction f'or 2 × 2 mm_ing targets

using temporal averaging. (a) Plot of FA rate (average munber per simulation) against

threshold (b) Plot of MD rate against threshold, for a number of signal aml)litudes (higher

amplitudes towards right). (c) Plot of *ID rate against FA rate (for marked amplitude). The

data points are marked as crosses. The MD rate when FA rate is FAT = 0.02 per simulation

is interpolated, and plotted as circle. (d) Plot of NID rate against aml)litude for FA rat(, of

FAT = 0.02 per simulation. The value of AT when _ID rate is MD,r -- 0.001 per target is

interpolated and marked as a cirvh,.
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Figure 3.13: Results for camera noise model with FPN correction for 2 × 2 stationary targets

using temporal averaging. (a) Plot of FA rate (average number per simulation) against

threshold (b) Plot of MD rate against threshold, for a number of signal amplitudes (higher

amplitudes towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The

data points are marked as crosses. The MD rate when FA rate is FAr = 0.02 per simulation

is interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of

FAr = 0.02 per simulation. The value of AT when MD rate is MDr = 0.001 per target is

interpolated and marked as a circle.

41



size change

\

1.2 1.4 1.6 1.8
size

2

size change

22

_2o

_oF

1.2 1.4 1.6 1.8 2

size

(a) (b)

10

size change

g

4.

_3.5

< !

i "2

1.2 1,81.2 1.4 1.6 1.8 1.4 1.6 2
size size

(c) (d)

Figure 3.14: Performance comparison of several algorithms: Plot of amplitude against tile

target size (x x x) for experiments without FPN correction using (a) Dynamic programming,
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Chapter 4

Theoretical Performance of Detection

Algorithms

In this chapter, the approximate theoretical performance of the algorithms presented in

Chapter 2 are derived. The theoretical derivations are based on the paper by Tonissen

and Evans [18]. The theoretical 1)erformance is compared with the experimentally observed

performance described in Chapter 3. Effects of approximations used in the derivations are

also described.

4.1 Dynamic programming algorithm

The dynamic programming algoritlun described in Chapter 2 can be summarized as follows:

1. Initialization: For all pixels (x, y) and all velocities (u, v), set

F(:r, y; _l, "t,"0) = 0

2. Recursion: At time k, set

F(x, y; u, v; k) = (1 - (_).f(.r, y; k) + (_

3. Termination: At time K, take

r_ 1';max F(x-u-: ,y-v-y';u, k-l)

(u,v)¢P
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The number of elements in sets P and Q are denoted by p and q, respectively. The values

of p = q = 4 have been used in our implementation, with u, v c {-1,0} and x', y' c {0, 1}.

Note that for theoretical analysis, the recursion step is replaced by:

F(x,y;u,v;k)= f(x,y;k)+e_ max F(x-u-x',y-v-y';u,v;k- a) (4.1)
(x',y')cQ

However, this only changes F by a scale factor and since both signal as well as noise would

be scaled equally, SNR analysis does not change.

4.2 False alarm and mis-detection probabilities

Probability of false alarms P_A is the probability that there is at least one state exceeding

the threshold Vr out of p velocity states at the final output time K, for the pixel where there

is no signal in its neighborhood - i.e., hypothesis/7o.

PpA(X,y) = Pr [ max F(x, y; ,t. v; K) > t_lH0] = 1 (4.2)
L(u,.)ep ' _ J

where P0,K(I"_) denotes the probability of F for hypothesis H0 at time K, being less than

or equal to the threshold l_.

Probability of mis-detection PMD is the probability that there is no output with correct

velocity (u, v) exceeding the threshold at time K, within a neighborhood R of size r + 1,

where one cell contains signal i.e., hypothesis H_ - and the other r cells are noise. This

allows for some tolerance in the location of target. For example, a 5 x 5 neighborhood

corresponding to r + 1 = 25 gives a tolerance of +2 pixels in the location of the target. On

the other hand, a 1 × 1 neighborhood consisting of only the target position corresponds to

r + 1 = 1 or r = 0 giving no tolerance for the target position.

PA,,p(x, y; u, v) = Pr [maxL_,,u,cRF(x-x',y-y';.,v;K)_< _IH1]

= P_,K(VT)[Po,K(VT)] _ (4.3)

where P_,K(Vr) denotes the probability of F for hypothesis H1 at time K being less than or

equal to the threshold _.

4.3 Normal approximations

For an analytic solution of the performance of the dynamic programming algorithm, the

distributions of the intermediate outputs can be approximated using normal approximations.
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2 for a numberof valuesof q.Table 4.1: \:alues of Po and Crq

2
q pq O-q

1 0 1

4 1.029 0.491

9 1.485 0.3574

25 1.965 0.2585

49 2.241 0.2168

Consider q independent st andar(l normal variables wi _ N(0, 1). The cumulative distribution

function (CDF) of the nlaximum of these variables is given by:

[IllaX',/,i _ 'lit] ---_ 1--[ PF[IL'i _ W] = [(I)(w)] q (4.4)
P(w) Pr

i

where q_(.) is the CDF of a standard normal variable. The probability density function

(PDF) is the derivative of the CDF given by:

= q[O(,,.,)]q'c(,:) (4.5)

where G(.) is the standard normal PDF.

This distribution of maxinmm of q standard norlnal variables can be approximated as

denote the mean and the variance of thea normal distribution _[(]lq, (y'2q),where ]l.q and (yq

actual distribution. These are computed using numerical integration, and are tabulated in

Table 4.1 for different values of q.

For general normal variables zi _ N(p, o'2), one (:an substitute: zi = p + awi where wi

are standard normal variables. The maximmn of zi is approximately normally distributed

with mean and variance given by:

F[max d = I' +  Ffmax,,,] = I' +

(4.6)

Let the input at any time k be normally distributed, both in absence and presence of the

target, so that:

f(x, y; klHo) _ N(l,n, cr_), .f(x, y;/ctH,) ,,., N(p,, cr_) (4.7)
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Then, the distributions of the output F at time k will also be approximately normally dis-

tributed so that

F(x,y;_,v klH0)-_ N(M0,k,SO,k) , F(x,y;_2.v;k]H1)_ -_ N("_II,k, $2l,k)

where the 51 and S parameters are calculated below.

(4.8)

4.4 False alarm analysis

For noise pixels, we have:

F(x,y;u,v;O) = 0

F(x, y;u, v; k) = f(x,y;k)+_

N(Mo,k, 2- So,k)

Ill a x
(x',yt)cQ

F(x- u- x',y- v- y'; u, v; k- 1)

(4.9)

Using equation (4.6), the mean and variance parameters at time k can be recursively ex-

pressed as:

Mo,o = O, Mo,k =

S 2 = 0 S 2
0,0 , 0,k ----

_Un "Jr- _(g_10,k-1 -_- #qSO,k-1)

2 2 2,-2
(7 n -_- o_ Oq,DO,k_ 1

(4.10)

Solving these recursive equations yields expressions for mean and variance at time K:

1 2K _2K
-- Oz Oq$2 2

O,K = (Tn
1 - a2a_

1 - o K h'-i

Mo,K - 1- ,_ "_ + _ Z_:o(_So,,____,)

(4.11)

To get approximate closed-form expressions for Mo K, one can write So,k as:

1 - 0_2K(7 2KSO,k = on 1 2 2
--0, O'q

,,_ a_ (1- "/kC*2ka2qk) (4.12)
-_/i 2 2--(_ O'q

where 7k is dependent on k but always lies between 0 and 1. Using 7k ---- 1/2 is equivalent

to using the first order term of binomial expansion, whereas 7k = 0 corresponds to assuming
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2 is quite small.that SO,k remains approximately constant with k, which is justifiable, since O'q

Accordingly, we have:

1 - (_K K-1

Mo,K -- 1 - o: -It'_ + apq Z ((*kSO,K--k--l)
k=O

1-(_K _al_qCh, [ 1____oK 1-(oo-_) K]

1 _-_- t*,, + V/1 _ ,,_2o._ [ 1_ ,_ _°/"-1 -1 -- 7:-_-_2c_O-q1
(4.13)

where 7 is a function of all % and also lies between 0 and 1. Values of %, = 0 and "7 = 1/2 can

be used as the zero order and first order approxinlations, respectively. For K _ oc, _ g: 1

2K << 1), we have:such that aK << 1 (also, aq

K i
For the case when ee = 1, the sum E_:0 c_ changes from (1 - ctK)/(1 -- ct) to K. Hence, the

expressions become:

1 -- O"2h",5,2 2
0,K = O'n

1 - aq2

1 _ (aq2)tc]
" tlqa'-----L t( - %.....

Mo,K = I_ pn + _ l-a;
(4.15)

Finally, the probability of false alarms is:

PF,4 = 1 -[Po,,,.:(l :r)] p (4.16)

giving

Po,K(I;v) = (1 - PF 4) '/p = + "( l ), -- "lIo,K _• _ So j," J (4.17)

where (I)(.) denotes the CDF of a standard normal variable. Hence, the threshold I:r can be

expressed in terms of the mean M0,s-, variance &.K, and the false alarm probability PFA as:

_,')" = ?,Io,h" -k So,K(I)-I [(1 -- PpA) i/p] = i]Io,K 4- So,KOO,p (4.18)

where

00,p = gP-l[(1 -- PFA) I/p] _ (I)-I [1 - P*_A/P] (4.19)
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4.5 Missed detection analysis

The probability of mis-detection is given 1)y:

PArD = P_,_,'(l:r)[P0,b`(l :r)l r _< PI,K(Vr)

Substituting the expression of l':r in terms of false alarm rate, we have:

P, WD = (1 -- PrA)r/vP,,K(I'v)

giving

(4.20)

(4.21)

et,K(Vr) = (I = <I) _,_' (4.22)

Hence,

PM I) 7
"_'T=A[1,Kq-E1,K_-I[(I_PIc4),/p] : _'['I,K -- _l,b`" (_l,p (4.23)

where

Ol,p:__(_-l[ PSID ] l[ PMD ],..,(__I[I__PMD] (4.24)(1 - PFA)_/P] = _ 1 -- (1 -- PFA)_/P --

since usually', PFA << 1.

Approximations of illl,a, and E 2l,h, are obtained considering the exceeding of threshold

only due to the signal part, and not due lo the noise part. Also, it is assumed that the target

occupies a single pixel. In such a case, we have:

F(x,y;u,v:k). __ .f(:,:,:V;k)+aF(:r,:V;,,.,'k., - 1) "_ N(M,,k,2- S,,k) (4.25)

It can be easily shown that:

1 - c_/< 1 - a 2K

M1 K "_ 1 -- c_ I_* ' E2 "_ 2 (4.26), -- -- 1,K -- 1 -- 0. 2 Os

4.6 Calculation of required SNR

To calculate the SNR required for detection at particular rates of false alarms and mis-

detections, equations (4.18) and (4.23) are combined to give:

A/[1,K -- Mo,b`" = So,K 0o,_) + El,b," 01,p (4.27)
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Using expressionsfor S0,/_-, M0,K, S1,K, and M1,K, and assuming /& = 0, tLs = 1l, and

Crn = as = a, equation (4.27) becomes:

1 -- t_ 'K

__ O{ ¸

1

V/1 _ a,2_r_ [ 1 - a 7a: 1 - eecrq2 J

( 1 -. 2/,'%21,- /1 - _2K

The SNR required for detection is givon by:

SNRr = 11,_ (_J_2 [1-3a t'-_ 1-c_

(7 - V/1 _ 2 [ 1-(fl"-- (t: (Yq

For c_ = 1, replacing (1 - (_K)/(1 -- (t:) by K, vce get

(4.28)

1 + a K

1 - a K Ol,p (4.29)

[ 1-4 1S N RT = tl±_ ttq 1- '--. + - (rq _o p + 01,p

cr-_ K 1 - c_2 J K 1-_ 2

For K --+ oc, a # 1 such that c_K << 1:

SNRT = 11 "_ (tjtq + 1 - a 1_1- o_

a 1 '2 '2 _1 O°'P++gl+aO'- - - ° _'_ - _4

(4.30)

,; (4.31)

The above expressions of SNRw can be written in the form:

SNR_r = .4 + B 00,p + C 01, p (4.32)

where A, B, and C depen(t on K, q, and (_. The terms B and C decrease with K, improving

the algorithm performance as K increases. However, the term A increases with K, putting

a lower bound on the required SNR, thus limiting the performance. It can be shown that

this bound increases with q, and hence a lowest possible value of q should be used. This is

intuitively explained, since a maximum is taken over q noise pixels and it is more likely to

be a false alarm when q is largo.

4.7 Temporal averaging and single frame thresholding

as special cases

Recursive temporal averaging algorithm {:an be considered as a special case of dynamic

2 1. Hence, the threshold SNR forprogramming with p = q = 1, for which l*q = 0 and aq =
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recursive temporal averaging 1)ecolnes:

SNRT---_ tl v/l-a: l+a Kcr 1 + a 1 - a:K [Oo,, + 01,1] (4.33)

This expression can also be obtained by using the recursive temporal averaging equations:

F(x,y;O) = O, F(x,!l; k) = f(:r,y; k) + aF(x,y; k- 1) (4.34)

Also, for a = 1, this expression takes the linfit:

1

SNRT - v'K [00,1 + OL,] (4.35)

The same result would be obtained by using c_ = 1 in original equations. For K -+ :_c, et # 1

such that ct A"<< 1,
I

,/1 - (, [0<1 + 01,1] (4.36)
SNRT = V1 + c_

For single frame t hresholding (K = 1 or c_= 0), the threshokt SNR, reduces to ¢0,1 + 01j-

Note that the first term fi'om the dynamic programming algorithm disappears in these

expressions, and there is no lower limit to the performance if c_ = 1.

4.8 Theoretical performance plots

This section describes the behavior of the required signal to noise ratio SNRT for different

values of parameters. It should 1)e noted that lower required SNR means better performance.

Figure 4.1 (a) shows plots of SNRj. against/( for dynamic t)rogranmfing algorithm with p =

q = 4 and a number of values of (,. The false Marm rate is 2 x 10 -8 (0.02 per simulation for a

1 mega-pixel image), and the ntis-detection rate is 0.001. It can be seen that SNRT decreases

with increase in K, but saturates at a certain point depending on a. Figure 4.1 (b) shows the

corresponding plot for p = q = 1 i.e., recursive temporal averaging. Figures 4.1 (c) and (d)

show the plots of SNRT against K with c_ = 1 and (t = 15/16, respectively, for a number of

values of p and q. It is observed that SNRT increases with q as expected. The SNRr also

increases slightly with p, lint the plots cannot show the change. Except in the case of c_ = 1

and p = q = 1 i.e., temporal averaging -- the SNRT saturates at some mininmm value as

K -+ oc.
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Figure 4.1: Plots of SNRT against K fl)r: (a) p = q = 4 (dynamic programming) and

number of a values. (b) p = q = 1 (temporal averaging) and number of c_ values. (e) c_= 1

and number ofp and q values. (d) c_ = 15/16 and number of p and q values. The parameters

used are: FA = 2 × 10 -s, MD = 0.001.
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Table 4.2: Parametersusedfor calculating the theoretical performanceof algorithms.

Parameter

FA
Dynamic prog Singleframe Temp. Avg. (stat)

2 x lO-S/pixel = O.02/image

MD O.O01/pixel

Ot

K 32

q 4

15/16

1 32

1

Table 4.3: Comparison of theoretical performance of the algorithms with observed perfor-

mance on 2 x 2 targets.

Algorithm Theoretical SNR Observed SNF/

Dynamic Prog

Single frame

Temp. Avg. (star.)

2.4540

8.5811

1.7507

2.04

8.17

1.65

4.9 Comparison between theoretical and observed per-

formance

The parameters used in the calculation of theoretical performance of the algorithms for 2 x 2

targets are shown in Table 4.2. The calculated and the observed SNR threshold for these

parameters for various algorithms are shown in Table 4.3.

One can observe that the actual performance of the algorithm for 2 x 2 targets is slightly

better than the theoretical performance for most of the algorithms. The reason for this is,

that a 2 x 2 target occupies at least one pixel completely, and a few other pixels partially.

Hence, its performance should be slightly greater than the calculated performance in which

one assumes that the target occupies exactly one pixel.

To correct this problem, point targets were used in place of 2 x 2 targets. The experiments

in Chapter 3 were repeated using point targets. The comparison between the calculated and

observed SNR for a number of false alarm and ntis-detection rates are shown in Table 4.4.
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Table 4.4: Comparisonof theoretical performanceof the algorithms with observed perfor-

mance on point targets for a number of different values of false alarm (FA) and mis-detection

(MD) rates.

Algorithm FA rate MD rate Theo. SNR Obs. SNR

Dynamic Prog.

Dynamic Prog.

Dynanaic Prog.

Dynamic Prog.

Temp. Avg.

Temp Avg.

Temp Avg.

2 x 10-s=0.02/simul

10-6=l/simul

10-6=l/sinml

10-4=100/simul

2 x 10-8=0.02/sinml

10-6=l/simul

10 6=l/simul

0.001

0.01

0.1

0.1

0.001

0.01

0.1

2.4540

2.2313

2.0181

1.9259

1.7507

1.4444

1.2313

2.7172

2.2928

1.9862

1.8401

1.7355

1.4307

1.2345

It can be seen that the calculated and observed SNR rates agree very well in most cases.

However, in the case of extremely low false alarm and mis-detection rates, the observed SNF(

is greater than the calculated SNR for the dynamic programming algorithm. The reason for

this is tile normal apt)roximation used for the distribution of resulting output.

4.10 Effect of approximations

Approximations were used to derive the closed form expressions. In this section, the effects

of these approximations are described.

Normal approximation

Normal approximation was used for maximum of q normal variables. The comparison of

the probability density, and the complementary cumulative distribution flmctions of the

maximum of q = 4 standard normal variables, and their normal approximation are shown in

Figure 4.2. It can be seen that the approximation is good in the interior, where probability

density is high, but is inaccurate in the tails, where the probability density is low.

Due to the difference in these distributions, the probability of false alarms is underesti-

mated. In fact, to get the actual vahle of the false alarm rate, the flmction corresp(mding

to the actual cumulative distribution of the output F should be used in place of cumulative
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Figure 4.2: Probability distributions of normal approximations: (a) Probability density

flmction (p(x)and p,_(:r)) (b) Complementary cumulative distribntion (Q(x) and Q,_(.r))

against x of the maximum of q = 4 standard normal variables (solid line) and the normal

approximation having same mean and variance.

normal distribution. But this distribution is ditticult t.o obtain in closed form.

To get an idea of the difference t)etween the actual distribution and the normal approxi-

mation, consider the function corresponding to tile complementary cumulative distribution

Q(x) = Pr[X > x] of the maximum of q = 4 normal variables as shown in Figure 4.2.

For Q(x) = 10 -s, we get x = 5.85, whereas for normal distribution the corresponding

Q_(x) = 10 -s gives x = 4.95. The difference is around 18 (/(: but is smaller for smaller values

of X.

At each step of the recursion, nlaximum of q instalwes of F at time k - 1 are taken and

added to the input f at time k to obtain the output F at time k. Hence, the distribution

of the output F at each time should be a better approximation of normal distribution than

Q(.), since a normal variable (.f) is added to the maximum term for obtaining the output F.

Also, since the normal approximation for F is good ill the interior, the mean and variance

of maximum of q instances of F will be close to what is computed assuming the normal

distribution. Hence, the mean and variance calculations are not affected much.

Furthermore, it is observed that the threshold SNR changes are small even for large

changes in false alarm and mis-detection rates. In any case, one would not directly use the

false alarm and Inis-detection rates during the application of the algorithm, but estimate

these dynamically using the output fronl the algorithm.
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Approximation in false alarm estimation

Another approximation was performed while eomI)uting the mean value Mo,K of the noise

output, used in false alarm estimation. For equation (4.12), 7 actually depends on k, which

makes it impossible to get an exact analytical expression. It was assumed that 2,' is fixed

and approximately equal to 1/2, corresponding to a first order approximation. However, it

is observed that the value of 310,K does not change much with 7 even for the extremes of

"y = 0 or "_' = 1. Hence, the approximation is reliable.

Approximation in mis-detection estimation

In the case of mis-detections, tile output of the algorithm at a target point is assmned to

be solely due to the target, without t.h(_ eff(_ct of noise. Tile noise can add or subtract the

target intensity. However, since maximum is taken over q pixels at every stage, bias is likely

towards adding. Hence, the inis-(t(_tections are likely to be less than what are estimated.
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Chapter 5

A Special Approach for Hazard

Detection

It is well known in the pilots' community, that an object on a collision or near-collision course

remains stationary or nearly stationary in its 2-D image view [14]. The closest distance that

an aircraft, would approach another before moving away from it, is known as the distance

of passage, and the time to reach that point is known as the time to passage, or time to

'collision'. For ensuring safety, the distance of passage should be larger than a certain limit;

and objects with a smaller distance of passage should be detected before the time to collision

becomes too small. It can be shown that the rate of translation of the object in the image

is proportional to the distance of passage. Using this property, the rate of image translation

can be used to separate hazardous objects from clutter, since the former have a smaller rate

of translation.

Another useful property which can be used t.o discriminate hazardous objects from clutter

is the rate of image expansion, which is approximately inversely proportional to the time

t.o collision of the object. Nelson and Aloimonos [15] use the image expansion in terms of

the flow field divergence to estimate the time to collision, for separating obstacles. Francois

and Bouthemy [7] separate the image motion into components of divergence, rotation, and

deformation. Ancona and Poggio [1] use 1-D correlation to estimate optical flow for a time-

to-crash detector. Baram and Barniv [3] rely on object texture to extract information on

local expansion. Instead of estimating a nuInerical depth value, an object is classified as

'safe' or 'dangerous' using a pattern recognition approach.

Most of these methods are useful for objects of larger sizes. However, in this case, the

object sizes can be very small, even sul)-pixel, along with very small rates of expansion.
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Hence,a feature basedapproachwasusedin this work, wherefeatureswere tracked, and

their expansionestimatedovera largenumberof frames.

This chapter describestile conditions under which the rates of image translation and

expansioncan be used to set)aratean object on collision coursefrom the ground clutter.

Methods to estimate the imagetranslation and expansionare proposedand tested on real

imagesequencesobtained from a camerare(rantedon an aircraft.

5.1 Scene geometry

Consider an object approaching towards the aircraft with a relative velocity of I" as shown

in Figure 5.1 (a). Let p be the distanc.e of passage i.e., the closest distance that the object

approaches the camera and 0 be the angle between the line of sight of the target and the

relative velocity vector V. Let _- denote the time to passage (or collision) which is the time

the object takes to reach the distance of passage. The object distance is r, whereas distance

that the object travels until it reaches the point of passage P is z.

5.2 Detection using translation

As the object moves, the angle 0 as well as distances r and z change, but the distance of

passage p is constant. The rate of angular translation of an object in the image is T = _).

The pixel translation is approximately given by multiplying the angular translation 1)y the

focal length. By geometry of Figure 5.1 (a), we have:

z = poet 0 (5.1)

To find the rate of translation 0, this ext)ression is differentiated to get:

= -p(csc O)/) (5.2)

The magnitude of the relative velo(:itv I _ is the rate of decrease of z, given by:

I=-z=p(r/p)2D (5.3)

Also, the time of passage is given by:

= z/l'= rcosO/l" (5.4)
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Figure 5.1: Geometry of (a) target (b) background moving relative to the camera.
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From equations (5.3) and (5.4), the rate of target translation is given by:

r = c:)- pI" p cos O (5.5)
I'2 T r

Thus, the rate of image translation is proportional to the distance of passage, and the

objects on a collision course are likely to have a smaller rate of translation compared to other

objects. However, this rate is also dependent on the target distance, and a nearer target

moves faster in the image than a farther target with the same distance of passage. If S,,,i,, is

the smallest visible dimension that all object can have, the corresponding size in the image

is given by,:

s 2 = S.../r (5.6)

Hence, from equation (5.5), one can write:

T p cos co p
- < -- < (a.r)
s -- 7-_mi n --T_miT_

Hence, an object on a near collision course, having sufficient tiine before imminent collision

has the ratio of its image motion to its image size bounded by the above pre-computable

limit. For example, if the distance of passage of p = 150 m (500 .ft) is allowed, and an object

of smallest size of Smi,_ = 1.2 m (4 ft) is to be detected before r = 25 seconds (750 frames).

then this ratio becomes 1/6 i.e., the image motion per frame is at the most 1/6 th of the

image size of the object. However, in actual practice, a larger range of velocities should be

checked, to have a safety margin.

It should be noted that the above relationship is valid only if the aircraft does not rotate

or vibrate around its own axes. If there is rotation, it should be compensated by using the

data from the aircraft navigation system. In tile absence of this data, it may be possible to

use image features due to clutter (if available) to perform the compensation, by modeling

their image motion due to camera rotation.

If this compensation is snccessflfl, the velocity to size ratio of the object would be

bounded. By reducing the image resolution to an appropriate level, the image velocity

of the object would also be restricted. Hence, using pyramid construction, target detection

can be performed at a number of resolutions, and the suitable resolutkm selected. This also

leads to spatio-temporal integration of the image data and the amplification of SNt2 which

could enable detection of sub-pixel or low-contrast objects in uniform background, such as

clear or overcast sky.

The relationship between image motion and tile distatice of passage can be used to remove

the clutter which is not on collision course and thus expected to have a large image motion.

59



However,the image motion is inverselyproportional to the distanceof the object from the

camera.Thus, if clutter is at a largedistance,it too could havea small imagemotion. The

conditions under which an object on tile collision coursecan be distinguished from ground

clutter at the sameimageposition arederivedbelow.

Let r0 and P0 denote the background distance, and tile minimum distance of approach for

the background, respectively, as shown in Figure 5.1 (b). The relative velocity lo between the

camera and the background is actually the magnitude of the camera velocity, By substituting

these parameters in equation (5.5), the rate of background translation can be written as:

To - pol _)
(5.8)

Let h0 = he - hb denote the difference between the camera altitude h_ and tile background

altitude h6. Also, the angle of the camera velocity above the horizontal (not horizon) is c_.

From Figure 5.1 (b), we have:

ro = dsec0 (5.9)

P0 = r0sin(0 + a) (5.10)

Here, d is a function of the relative height h0 and tile angle 0. If the earth were flat (or 0 is

large), refraction of light is negligible, and the terrain is smooth, tile dotted line corresponding

to d would coincide with the surface of the earth, and we woul(t have

d = h0 cot 0

However, if we express:

d(ho, 0) = h0 cot Of(ho, O) (5.11)

then the effects of the earth's curvature and refraction of light ray would be incorporated

in the function f. If these factors can be neglected, then f(ho, 0) __ 1. The expression for

f using the curvature of the earth is derived ix] Section 5.4. Also, using equation (5.9), one

can write:

r0 = h0 csc Of(ho, O) (5.12)

Substituting equations (5.10) and (5.12) in (5.8), the rate of background translation To is

given by:

sin(0 + a) Iosin(0 + a) sin0
To = = (5.13)

r{} hof (h,o, O)

If the hazard is to be discriminated from the background ill the same line of sight, the

rate of translation of the hazard must be much smaller than that of the background i.e.,
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T _< r/_-lT0 with rh > 1, having a larger value for greater discriminating power. Using

equations (5.5) and (5.13), we have:

pcos0 < q_-i lo sin(0 + (t) sin0
vT-- - hof(ho, O) (5.14)

Hence, the object distance r should be larger than the following expression:

r > ',_a)hof(ho, O)cosO 71a)D.f(ho, O)v/-F-2-_= (5.15)
- rI}) sin(0 + (Q sin 0 sin(0 + (t) sin0

with
ho

D- 71o' Q -

Hence, 0 should satisfy:

P -- sin 0, cos 0 = V/_ - Q2 _ 1 (for p << r) (5.16)
]'

sin(0 + o:) sin 0 __ 7hDQv/1 - Q2f(ho, O) (5.17)

Also, using T < --1_ 7h To, with equations (5.5) and (5.13), one can write:

p cos 0 _1o sin(0 + a:)
-- < V_- (5.18)

T Y F0

Since the object distance cannot t)e greater than the backgr(mnd distance in the line of sight,

r _< r0. Hence, one can also write:

sin(0 + (_) _> rhp cos 0 r0 > rhpv/_Z_ (5.19)
rI; r' - rio

For p << r or Q << 1, this condition is al)t)roximately indel)endent of r. It can be said that

for detection to be possible at all for a particular 0 and c_, the above condition is necessary

irrespective of the target distance r, provided it is sufficiently large.

If the curvature of the earth an(t the refraction of light (:an be neglected, then f __ 1. The

necessary condition in equation (5.19) does not simplit_v. However, equation (5.17) reduces

to:

sin(0 + (_) sin 0 > q, DQv/1 - Q2 (5.20)

On solving for 0, this yields:

(5.21)

If c_:= 0, the solution for 0 is siml)ler:

O > sin-_ lqtDQ_l - Q2 (5.22)
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For example, if we have:

p=150m, w=25s', 1o= 15Ore/s, ho=lkm, c_=O, tit=2.5 (5.23)

For these values D = 0.267, and from equation (5.19) the necessary condition is 0 > 5.7 °.

This condition corresponds to the target being at the same position as the background,

which is r = r0 = 10kin _ 5.4 nmi or Q = 0.015, using equation (5.12). However, if the

target is nearer, the condition on 0 is determined by equation (5.17) or (5.20). For example,

if a hazard should be detected at r = 5 km __ 2.7 n.mi or Q = 0.03, one would really need

0 > 8.1 °. The required 0 increases as r decreases.

5.3 Detection using expansion

Another discriminating feature between objects on collision course, and objects much farther,

is the time to collision. It is well known that the rate of image expansion, i.e., the increase

of the image size of an object is inversely proportional to the time to collision.

In Figure 5.1 (a), as the object comes closer to the camera along the line of z, its size in

the image will become larger. The rate of this expansion of any object is defined as the ratio

of the rate of increase in its size to the size at that time, i.e., E = ,_/s - where s is the

size of the object in the image. Since s = Co/r where S is the object size which is assumed

constant, we have ,{'= -S?/r 'e, and

E = -i./,. (5.24)

By' geometry of Figure 5.1 (a),

/.2 = Z2 +i)2

To find the rate of expansion, this expression is differentiated to yield:

(5.25)

2ri'= 2z5 = -2zl" (5.26)

Hence, rate of target expansion is given by:

E __

where the time to passage is:

i" zl" 1" cos 0 cos 2 0

F 'F 2 F T

= ,-cos (5.28)

For r = 25 s = 750 frames, the ratio is 0.13 % per frame, which is a very small magnitude.

This small expansion can be measured by tracking it over a large number of frames.
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For estimating the rate of expansion of the background, the corresponding parameters

for the background are substituted ill equation (5.27) to give:

z0I;

E0 - ,._ (5.29)

Using z0 = r0 cos(0 + (_) with equations (5.9) and (5.11), the rate of background expansion

can be written as:

l}) cos(0 + _) 10 cos(0 + a) cos 0 lo cos(0 + c_) sin 0
Eo = = = (5.30)

r0 d hof(ho, O)

If reliable discrimination of the hazard ffoln the background in the same line of sight

is required, the rate of expansion of the, hazard inust be much larger than that of the

background, - i.e., E _> 7?,,E0 with _1,, > 1, having a large value for greater discriminating

power. Using equations (5.27) and (5.30), one needs:

or

cos =0 loCOS(0 + a) sin0
-- -> 'l,, (5.31)

r hof(ho, O)

cos(0 + (,)sin0 < h°f(h°'O) c°s20 = 'b, _D(1 - Q2)f(ho, O) (5.32)

where D and Q are given by equation (5.16). For the case of .f -_ 1, the equation (5.32)

reduces to:

cos(0 + a) sin0 < '/_-'D(1 - Q2) (5.33)

Explicit solution for 0 is then given by:

0 < 1 [sin-' (2,171D(1 - QU)+ sina) - a] (5.34)-2

For the conditions in equation (5.23), we need 0 _< 6.2 ° for reliable detection using expansion.

It should be noted that the expansion ill image size can also be caused by tile rotation of

the target aircraft in a way which would expose a larger area to the camera. However. this

false expansion takes place only in the direction peri)endicular t.o the axis of rotation of the

target aircraft, whereas the expansion due to a potential collision would take place uniformly

in all directions. Also, the target expansion will cease after the aircraft fully rotates to a

position where maximum area is exposed to the camera. It may be possible to use these

properties to discriminate between the false expansion and the expansion due to a collision

course.

63



(O,R+ ho)

h

- -- R ( sin y, cosy )

d

R--R0+

Figure 5.2: Geometry of earth's curvature: The coordinates used are with respect to earth's

center.

5.4 Effect of horizon

In this section, function describing t h(' effect of the curvature of tile earth is calculated,

neglecting the effects of refraction. Figure 5.2 shows the geometry of the earth's curvature.

The coordinates used are with respect to earth's center. Using this, we have:

d= Rsin% dtanO = ho + R(1 - cosT) _- ho + d2/(2R)

where R = Ro + hb, hb is the altitude of tile background, R0 is the radius of earth, and _. is

the angle subtended oil the center of the earth by the triangle. Solving this equation yields:

l
The correct solution is the smaller value of d, since the larger value represents the other

intersection of the line of sight with the earth.

d= R[tanO-v/tan20-2h0/R] = 2h0 (5.37)
tan 0 + v/tan 2 e - 2ho/R
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By substituting in equation (5.11),wehave:

2
f(ho,O) = (5.38)

1 + _/1- 2bo/(Rtan20)

If 0 __ 77/2, or R is large, h is small, then f __ 1, - i.e., the earth's curvature can t)e neglected.

However, where the line of sight just touches the earth i.e., at the horizon tile discriminant

under the square root is zero, then f = 2 and tile corresponding 0 is:

Oil = tan -1 _/_ (5.39)

Any value of 0 smaller than this value corresponds to the line of sight not touching the earth

i.e., background above the horizon.

5.5 Behavior of translation and expansion

Figure 5.3 shows the variation of the required 0 with the horizontal, for the possibility of

detection using translation and exl)ansion, against various parameters. Effect of horizon

was neglected since it was observed that it does not affect the l)h)ts to a significant extent.

The minimum 0 for detection using t.ranslation, which is shown l)y dashed line, whereas the

maximum 0 for detection using exl)ansion is shown by dotted line. However, the minimum

0 criterion is only the necessary criterion. For actual discrilnination using translation for an

object at a given distance, a larger 0 is required. The other curves show the required 0 for

detection using translation for various object distances in meters, and are envelot)ed by the

dashed line curve.

Most of the information in these curves can be condensed using the parameter D =

ho/(rl_;). Figure 5.4 (a) shows the contours of same D for different values of Io and h0 for

r = 25 s. Plots of required 0 for translation and expansion using a number of values of the

target distance r in kin, for the distance of passage p = 150 m are shown in Figure 5.4 (b).

However, the necessary criterion for translation camiot t)e expressed using these plots.

5.6 Estimation of translation and expansion

To reduce the computational complexity of estinmting the translation and expansion, a

feature-based approach was used. A mori)hological filter [6] which subtracts the opening

and closing of the image from the original image was used to detect positive and negative

features, corresponding to light an(t clark objects, respectively.
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Figure 5.3: Variation of the required 0 with the horizontal, for the possibility of detection

using translation and expansion, against a number of t)arameters: (a) Camera velocity: Io,

(by Relative height between camera and ha(:kground: t_0, (c) Distance of passage: p (d) Time

of passage (or collision): r. Default values of the parameters (except when they vary') are:

Yo = I kin�s, ho = 1 kin, p = 150 m, and r = 25 s, and lit = lie = 2.5. The minimum 0 for

detection using translation is shown bv dashed line, whereas the maximum 0 for detection

using expansion is shown by dotted line. The other curves show the required 0 for translation

for various object distances in meters
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Figure 5.4: Plots for detection using translation and expansion: (a) Plot showing the contours

of same D for different values of I_) and h0 for 7- = 25 s (b) Plots of 0 required for detection

using translation are shown with various symbols for a number of values of the target distance

r in kin, for the distance of passage p = 150 m. Plot of the 0 required for detection using

expansion is shown with a dashed line.

To estimate the translation of the features over a number of frames, they were tracked

over a number of frames. In case of navigation system data being available, the position of the

features were compensated before performing the tracking. A nearest neighbor approach was

used to determine the corresponding feature in the next frame, and the smoothed estimates of

the feature position and velocity in each frame were obtained using Kalman filter approach.

This procedure is similar to the one described in Chapter 7 used for detecting targets crossing

the aircraft.

For detecting expansion, a 15 x 15 window ar(mnd each feature was explored. The

sub-image corresponding to the window was thresholded, and the connected component

containing the center of the window was found. All the pixels in the sub-image that did

not belong to the component were set to zero. To estimate the size of the component, the

sub-image was convolved with a number of smoothing masks. These masks perform matched

filtering with a object templates corresponding a nmnber of different sizes. The maxinmm

output from all these masks was considered as the measure of target, strength. The rate of

expansion was measured in terms of increase of the target strength, tracked over a number of

frames. The target strength was plotted against the frame number, and the rate of expansion

was estimated by applying least squares to the logarithm of the target, strength.
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5.7 Results

The estimation of translation and expansion was performed on a sequence of images captured

from an analog camera in which the target aircraft is approaching the camera. Figure 5.5 (a)

shows a typical frame from the sequence. Figure 5.5 (b) and (c) show the target track in

the original and the motion compensated images, respectively. Figure 5.5 (d) shows the plot

of the estimated target size against the frame number. Corresponding plots for two clutter

tracks are shown in Figures 5.6 and 5.7. It can be seen that the target expansion is the

large for the target track, and small for the clutter tracks. On the other hand, the rate of

target translation is small for the target track and large for the clutter tracks. Figure 5.8

shows the significant tracks before and after motion compensation. A scatter plot of the

feature expansion against translation for these tracks, including the target track is shown in

Figure 5.9. The rate of translation is measured in terms of the displacement magnitude of

the compensated features in 100 frames, whereas the rate of expansion is measured in terms

of the increase in the logarithm (to base 10) of the target strength in 100 frames. It is seen

that the target has a large rate of expansion and a small rate of translation and is located

in the upper left corner of the scatter plot.
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(a) (_)

((:) (d)

Figure 5.5: Translation and expansion for target track: (a) Sample image from the last

frame. (b) Target track (c) Target track after compensation. Rate of translation is small

for target track. (d) Plot of expansion against frame nmnber. Rate of expansion is large for

target track.
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(c) (d)

Figure 5.6: Translation and expansion for clutter track: (a) Sample image from the last,

frame. (b) Target track (c) Target track alter compensation. Rate of translation is large for

clutter track. (d) Plot of expansion against frame number. Rate of expansion is small for

clutter track.
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(c) (d)

Figure 5.7: Translation and expansion for another clutter track: (a) Sample image from the

last frame. (b) Target track (c) Target track after comt_ensation, irate of translation is large

for clutter track. (d) Plot of expansion against frame number, irate of expansion is small

for this chltter track.
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Figure 5.8: Feature tracks (a) before, and (b) after rotation compensation:

surrounded by a rectangle has a small translation after compensation.

Target track

72



01

0 09

0 O8

0 O7

006

8

g 005

004

0 03

002

001

x

x

× x
x

x ×
x x×

x
×

×
x x

××
L i k

4 5 6

translation score

i L I I I

2 3 8 9 10

Figure 5.9: Scatter plot of the feature expansion against translation: The rate of translation

is measured in terms of the displacement magnitude of the compensated features in 100

frames, whereas the rate of expansion is measured in terms of the increase in the logarithm

(to base 10) of the target strength in 100 frames. The target is marked as an encircled

asterisk, and is in upper left corner, having a small rate of translation and a large rate of

expansion.
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Chapter 6

Algorithm Fusion

Each of the target detection algorithms has its own advantages and limitations. Hence,

a combination of these algorithms may be used in the ultimate design to overcome their

individual limitations while maximizing their advantages. This chapter describes a method

for combining the algorithms using statistical approach to optimize the performance in terms

of the mis-detection and false alarm rates. In particular, the pre-processing algorithms of

low-stop and morphological filters, described in Chapter 2 are combined. The performance

of the fused algorithm is compared with the original algorithms using the methodology

described in Chapter 3.

6.1 Combination of algorithms using a statistical ap-

proach

According to the Neyman Pearson criterion, the optimal Bayesian detector which minimizes

the rate of mis-detection for a particular rate of false alarms is obtained by thresholding the

joint likelihood ratio of the individual detector outputs, or some monotonic function of the

same. The threshold should be such that the desired false alarm rate is obtained.

Consider the joint likelihood ratio of the low-stop and the morphological filter. Let z =

(Zl, z2) be the 2-D vector denoting the outputs of the low-stop and the morphological filters,

respectively. Let p(zlHo, C) and p(zlHj, C) denote the joint probability density functions

for the hypotheses denoting the absence and presence of a target, respectively, for clutter

level estimate C. The likelihood ratio is then given by:

p(zlH_,C) (6.1)
Lg,c(Z) - p(zlHo ' C)
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6.2 Statistical behavior of low-stop and morphological

filters

In the following analysis, it is assumed that the input image pixels are described by the

sum of the signal 0, background level /_, and the camera noise u, which is modeled as an

uncorrelated Gaussian noise of zero mean and variance 7]2.

:r = 0 +,3 + u (6.2)

If there is no clutter, the distributions of .r ill absence and presence of the target are given

by:

p(:rlHo) _ .\(/_, 712), p(xtH1 ) _ N(O + i_,712) (6.3)

If clutter is present, the exact distributions would depend on the nature of the clutter.

Here, it is assumed that the presence of clutter changes the mean background level, and the

variance parameter of the noise, making these parameters space varying.

Low-stop filtering is performed by subtracting the low-pass filtered image, using a weighted

spatial average of the neighl)orhood, from the original image. This filter attemi)ts to sub-

tract the background level. Since it is a linear filter, if the input is normally distributed, the

output zt will also be distributed as:

p(z, IHo) _ N(O, c,_), p(z, IH,)_ .\_(l,,,c,_) (6.4)

with

ot = f_l, _L_= gtO (6.5)

where fl and 9_ are the amplifi(:ation gains in the standard deviation and mean due to the

filter. It should be noted that the background level _3 is subtracted out by the filter.

Morphological filtering is performed by taking the difference between the original image

and its opening (positive targets) or closing (negative targets). Without loss of generality,

only positive targets arm (:onsidere(t, which are detected by subtracting the opening from

the original image. This is expected to remove uniform background, as well as most of the

clutter.

To obtain a model for the distribution of the morphological filter and to verify the distri-

bution of low stop filter, simulations were performed. A large number of floating point images

containing Gaussian noise were generated. Low-stop and morphological filter were applied

to these images, and the histograms of the filter outputs were obtained. Figure 6.1 (a) shows
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the histogramof the original imagewith Gaussiannoise. Figure 6.1 (b) showsthe histogram

of the low-stop filter output, which is normally distritmted with zero mean, as expected.

The histogram of the morphologicalfilter output is shownin Figure 6.1 (c). It can be seen

that the histogram resenfl)lesa normal distribution with a positive mean. However,since

the openingof an imageis always lessthan or equal to the original image,the filter output

is alwaysnon-negative.Hence,the distribntioll is truncated on the negativeside,and hasan

impulse at zero in placeof the negativevalues. For clarity, the distribution after removing
the impulse is shownin Figure 6.1 (d).

This distribution can be modeledbv using a hypothetical normally distributed variable

(m _ N(Itm, a_z). The output z,,, of the mort)hologieal filter can be expressed in terms of _,,,

aS:

zm = max(_-m., O) (6.6)

It can be shown that the explicit distribution of z,_ is given by:

Gm G_n Grn /

where u(.) is the unit step flmction, 3(-) is the Dirac impulse fimction, and G(.) and q)(.) are

the probability density and cumulative distribution functions of a standard normal variable,

respectively. It can be shown that the mean and variance of this distribution, which are

2different from the parameters l_r, and a,,,, can be expressed as:

(6.8)

Hence, the parameters It,, and a., can be obtained from the observed values of rn,,, and

s,,,2 bv_ using a numerical method. It (:an be shown that this procedure _vields the maximum

likelihood estimates of the parameters. The parameters derived from the above simulations

are shown in Table 6.1.

To obtain the distribution in presence of a target, a number of simulated targets of

fixed amplitude were added to each of the images generated above. Morphological filter was

applied to these images, and a histogram of pixel values only at. the target positions was

obtained. However, since the number of targets is not as large as the total number of pixels

in the image, the histogram is less reliable than in the case of absence of targets. These

experiments were repeated for various signal amplitudes and the sample mean and variance

of the outputs were computed. The sample means and variances were taken as the estimates

76



104
2.51x 104

100 120 140 160 180 0 0 50

(a) (b)

14ix 104 25x 104

12

10

10 20 30 40 50 60 10 20 30 40

(c) (d)

5O 60

Figure 6.1" Statistics of low-stop and morphological filters: Histograms of: (a) Input image

with Gaussian noise. (b) Output of low-stop filter. (c) Output of morphological filter. (d)

Output of morphological filter after removing imImlse at zero value.

77



Table 6.1: Statistical parametersof low-stopand morphologicalfilters derived from sinnlla-

tions

Parameter Vahle

_/ 10.0

m/ = lq -6.6e-08 __ 0.0

,_t = cs/ 9.9815 _ 10.0

m,,_ 7.0539

.s,,_ 7.8352

I_,, 4.6293

a., 10.8423

of tile means and variances of the distributions. For the low-stop filter, tile parameters itt

and at coincide with the distrilmtion mean and variance mt and s_, respectively, and are

approximately equal to the signal amplitude 0 and the input noise standard deviation _1,

respectively, corresponding to gl _ 1 and fl _- 1. For the morphological filter, the actual

parameters tzm and a,,, of the underlying normal distribution were calculated from the ml

and s_ using the simultaneous equations (6.8). It was observed that the parameter csm

is approximately equal to the noise intensity 71, and does not change much with the signal

amplitude 0. However, the parameter it,_ increases non-linearly with 0. It has a positive value

at 0 = 0 i.e., noise-only condition and increases with a lower rate than the corresponding

low-stop filter parameter #t. Figure 6.2 shows the plots of the parameters/xt and #,,_ against

the signal amplitude 0.

The output of the morphological filter is invariant to the constant background level ;_.

Furthermore, it also suppresses the clutter. Hence, the effective 'noise' intensity for the

morphological filter wouhl be different from that for the low-stop filter in case of cluttered

scenario, and is denoted by 71,,,. However, in the case of the above simulations it is the

same as the original noise intensity q. If 7/,,, as well as the signal amplitude 0 are scaled

by a constant factor, a,,, and I_,,, will get scaled by the same factor. Hence, outputs of the

morphological filter for any general q,,, can be written as:

(o)a_ = rl_.f,, , lZ,,_ = rl,_gm = f,--_ g,_ (6.9)cr,n ,I

where fm is the gain in standard deviation (.fro _- 1), neglecting the dependency on the target
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Figure 6.2: Plot of parameters lit and p,,, against signal amplitude 0 for 11= 10.

SNR, and gin(') is the gain in mean, depending on the target SNR 0/q,,. The function f,,,

can be obtained from tile exl)erimentally detenniued values of Pm and c,,,, for r/= 10, plotted

in Figure 6.2.

It was also observed that there is a correlation between the outputs of the low-slop

and the morphological filters. Hence, the joint distribution of the two outputs is modeled

as a normal distribution, truncated for the morphological filter. Assuming a hypothetical

random variable _ = ({t, _)t which is normally distributed, the actual output vector z can

be expressed as:

z = (z,, z,,) t = ({,, ,nax({,,,, 0))' (6.10)

The parameters of distribution of z are:

1' = , E = (6.11)
/tin p_YlO-m 0-2

2
where p is the correlation coefficient, and a 2 and a,,, are the individual variances of zt and

Zm, respectively. The distribution mean and covariance matrix are given by:

Illzz_ P"_'l 'S'm '- rn
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Note that due to the linearity of the low-stop filter, we have mt= lit, sl = at.

However, using these relations, it is analytically difficult to calculate the actual correlation

coefficient parameter p from the observed correlation coefficient p'. Furthermore, such a

computation would have to be repeated for ew'ry pixel, which is highly, inefficient. Hence,

the value of p = p' is currently being used.

Using the above models of low-stop and morphological filter outputs, the distribution of

z for Zm > 0 is given by:

p(zlHo) = 12=rl-_/2exp[(z - l,o)'r-'(z - I,.o)/2]

p(zlH_) -- 12_1-'/_exp [(: -/,0)'v_ '(_-- t,o)/2] (6.13)

For zm < 0, p(zlHi ) = 0 Also, there is an impulse function at z,,_ = 0, so that the integral of

p becomes unity.

6.3 Bayesian fusion of multiple filters

The combined likelihood ratio of the two filters is given by:

p(zlH_,C) _ N(l,e,_c) (6.14)
Lu,c(z) - p(zlS0, C) - N(/_o, Ec)

where po and p0 are 2-D vectors denoting the mean outputs of the algorithms in presence

and absence of target. The covariance matrix Ec, which depends on the clutter level, can

be estimated using the image, and will be denoted by S for brevity'. The same covariance

is used for the presence and absence of the target, since it is experimentally observed that

there is not much difference between the respective covariances.

Using equation (6.13), the log likelihood ratio (LLR.) is given by:

l(z) = logLl,,C(z) = -l (z - lt,o)tE '(z- p,o) + _(z- lto)tE-l(Z- po)

1

= (.o- Po)tE-l(z - Po) - _(l'e- po)tE-'(Po - Po) (6.15)

The parameters of the LL1R in absei,ce of target i.e., E[zlHo] = po, V[zlHo] = r can be

computed as:

1 1E[l(z)lgo] = (t,e - t,o)'E-_E[z - l,otHo]- _(l,o - po)tE-'(l,o - po) = - d e

V[l(z)lgo] = (po - #o)t,v]_-lI_*[ Z - t,olHo]_-'(/,o - i,o) = d2 (6.16)
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where d known as the deflection coefficient [13] is the generalization of the signal to noise

ratio for multiple dimensions.

d= vJ(,.o- 1,0) (6.17)

When the target of any strength is present, the variance parameter still remains the same

but the mean parameter changes. For the target strength such that E[zlHa ] = Po, the LLl_

parameters are given by:

1
E[I(z)IH,] = (Po - #o)tE-1E[z - ,uolH1]- -_(p.o - #o)tE-l(#o - t'o) = _d 2

V[I(z)IH,] -- (#o - po)tE-'V[z - #oIH1]E-I(Po - m) = d 2 (6.]_8)

It is seen that the mean and variance of the LLR are dependent on the mean and variance

parameters of the filter outputs. Due to this, the probability of false alarm and mis-detection

also depends on these parameters. Accordingly, two approaches of obtaining a detector are

shown below.

6.3.1 Constant False Alarm Rate (CFAR) detector

To get a constant false alarm rate irrespective of the local variance, the LLR is normalized

so that it would have a zero mean and unit variance in absence of the target. The resulting

function is given by:

l(z) - E[l(z)lHo ] (#o - IZo)tY]-l(z- P0)
D(z) = = (6.19)

_/V[l(z)lHo] V/(#o- [lo)tX-l(#o- ]AO)

This is a matched filter, which matches the 2-D outputs from low-stop and morphological

filters, to the expected outputs of these filters. Since D(zlHo ) _ N(O, 1), if a threshold 7- is

applied, the false alarm rate is given by:

PFA = 1 - • (T Z E[D(z)lHo]'_V[D(z)lHo] ] = 1 - 4p(w) (6.20)

where 0(.) denotes the cumulative distribution of a standard normal variable. Note that

this is now independent of any parameters. In presence of a target so that E[zlH1 ] = iLo, it

can be easily seen that D(z) ,--, N(d, 1). Hence, the mis-detection rate is given by:

pMD = ,_ (r - E[D(z)[H1])p[_ = @(_- - d) (6.21)
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The CFAR approach attempts to maintain a constant false alarm rate all over the image,

irrespective of the local variance. Hence, it would be useful if a constant false alarm rate is

required in all parts of the image, for example, if the parts are processed separately oil parallel

processors. To check the conditions under which this filter is optimal, the log likelihood ratio

l(z) is written in terms of the discriminant function D(z) as:

t(z) = d D(z) - d2/2 (6.22)

It can be seen that, l(z) and D(z) are monotonic to each other when the deflection coefficient

d, given by equation (6.17) remains constant. Under such conditions, thresholding D(z) is

equivalent to thresholding l(z)_ the latter being the Bayesian optimum. The deflection

coefficient is dependent on the covariance of the noise, as well as the target strength, and

is the generalization of SNR for multiple dimensions. Thus, if the variance parameters of

the individual filter outputs, as well the target amplitudes, are constant across the image,

this approach is optimal in terms of the false alarms and mis-detection rates. However,

in practice, the parameters (especially the low-stop filter output variance) do depend on

the clutter level. In such a case, if the target amplitude is constant throughout the image,

the CFAR, approach is not. optimal. However, if the criterion for good detection is to detect

targets having a particular SNR i.e., stronger targets in cluttered regions but weaker targets

in uncluttered regions the CFAR, approach can be considered optimal.

It can be seen that. D(z) is dependent on the target amplitude 0 through It0 - It0, as

well as d. If #0 - it0 is a linear function of the target amplitude 0, it would cancel out in

equation (6.19) and D(z) would become independent of the signal amplitude 0. However, if

lto - #o is non-linear, the filter would be optimal only under specific conditions.

The false alarm rate is determined by the threshold r, whereas the mis-detection rate is

also determined by the deflection coefficient d. Consider optimizing the matched filter for

a particular d, in an environment with clutter covariance E. If 0 is the signal amplitude,

equations (6.5)and (6.9)yield:

.0-,,0 = -- ( )

Using this expression, the following equation should be numerically solved for 0 by evaluating

#0 - go using equation (6.23) with the particular d.

(t_0 - t_0)tE-_(t_0 - #0) = d 2 (6.24)
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However,if the covariancematrix E variesthroughout the image,this procedurewould have

to becarriedout for all pixels,which wouldbehighly inefficient. Furthermore, the procedure

optimizesonly for a particular valueof d.

Alternatively, if one assumes that d and 0 are small, one can optimize the fusion using a

Locally Most-Powerful (LMP) test [13, 17]. For small value of 0, we have:

ILo - llo _- • 0 = 0 = s 0 (6.25)
I0:0 gin(0)

where s is 2-D vector independent of 0. The expression is now linear in 0, and the discriminant

function D(z) becomes independent of 0.

with

stE-l( z -- m)
D(,) = (6.26)

s= [gt g_,(0)]t (6.27)

6.3.2 Direct thresholding of Log Likelihood Ratio (LLR)

As shown in the previous section, if the amplitude of the signal to be detected is fixed

irrespective of the local variance, the overall mis-detection rate for a given overall false

alarm rate is not minimized by the CFAR approach. In fact, there cannot be a single

optimal detector for all amplitudes. Hence, the fusion should be optimized for a particular

amplitude. A criterion for choosing this amplitude is described below.

Suppose that some particular minimum rates of false alarms as well as mis-deteetions are

required for the algorithm. The amplitude corresponding to the minimum possible variance

- i.e., the variance of the camera noise without clutter can be used to tune the fusion. If

the actual amplitude is smaller than this amplitude, even an optimal detector tailored to

that amt)litude will not give the required false alarm and mis-detection rates. On the other

hand, since the performance of the detector increases monotonically with the amplitude, a

larger amplitude yields a better t)erformance, though it may not be optimal.

Suppose the LLR threshold is T. Using the mean and the variance of the LLR in absence

and presence of the target, given by equations (6.16) and (6.18), the false alarm and ntis-

detection rates can be computed as:

P_A=I--d_(T+d2/2) , P_tD- =_(T-d2/2) =l-(_(cl2/2-d-T ) (6.28)
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If one denotes:

¢o = 4-1(1 - =
r + d2/2

d
, OJ = (b-1(1 - ParD) _ ,4/9,2/.

T

d
(6.29)

then 7- can be eliminated to obtain:

00 -- Ol = d = V/(lto - l,,o)t_v2_ 1(,/i 0 - ,/10) (6.30)

The target amplitude can be chosen such that 11.ocorresponding to it satisfies this equation,

using 2 -1 under noise only conditions.

6.4 Application on images

To apply this procedure on images, the statistical l)arameters are computed in an annular

31 x 31 window around each pixel, where an 11 x 11 window immediately around the pixel is

excluded to reduce the biasing of parameters when the target is t)resent at the pixel. There

is a trade-off between using larger sized window giving more reliable estimates, and smaller

sized window giving better localization in case of space varying clutter intensity. The window

size used here was arbitrary. However, use of different window sizes can be explored to find

the optimum window size.

Efficient methods are used to estimate the distribution mean m and the covariance S at.

each pixel of the low-stop and morphological output images. From these, the estimates of p

and P_ are calculated and stored as images. However, in some experiments, fixed values of p_
2

and (7m were used for the morl)hological filter, since the estimates are less reliable, but do not

change nmch over the image (uiflike h)w-stop filter, where these parameters heavily depend

on the clutter). The template signal fl)r the matched filter is calculated using equation (6.27),

and the matched filter is applied separately to each pixel.

6.5 Results

The algorithm fusion approach was evaluated using the performance characterization ap-

proach of Chapter 3. Background images obtained from digital and analog cameras shown

in Figures 6.3 (a) and (b), respectively, were used for false alarm analysis. For mis-detection

analysis, a number of targets of size 2 x 2 were added to these images. Low-stop and mor-

phological filters were applied to these images. The outputs of these filters were fllsed using

the two approaches described above. The local variance of the low-stop filter output, which
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is a measure of clutter, is shown in Figures 6.3 (c) and (d). The histogram of the local

variance is shown in Figures 6.3 (e) and (f). It is seen that the analog camera image has a

much higher clutter level than the digital (:amera image.

For the Constant False Alarm Rate (CFAR) fusion, the Locally Most Powerful (LMP)

test was used. This gave the matched filter template as:

_. = (.qt,9_,,(0))t = (1.O, 0.8623) t

gives a slightly lower weight to the morl)hological filter when the level of noise is same for

both the filter outputs. The plots of the mis-detections against the false alarms for the digital

camera images are shown in Figure 6.4 (a) and (b), These use the assumption that the outputs

of the low-stop and morphological filters are correlated. Algorithm fusion was also performed

assuming independence between filters i.e., p = 0. The independence assumption gave a

slightly better performance for the fused filter as shown in Figure 6.4 (c) and (d), possibly

because the correlation between filters may not have been a(lequa{ely modeled. Similar plots

using analog camera images are shown in Figure 6.5.

In both the cases, it is seen that the fllsed output does not give optimal performance

for all the rates of false alarms. However, it can be observed that the fllsed output does

give larger weight to the filter which has a better performance in the particular case. For

example, in the case of digital camera images having relatively low clutter, (Figure 6.4), the

better performing low-stop filter is given higher a weight. On the other hand, for analog

camera images (Figure 6.8) with severe background clutter, the morphological filter which

performs better is given a higher weight. Since the individual filter which would actually

perform better in a particular case would not be known a-priori, the fllsion at. least serves

the purpose of selecting the better filter.

To explore the reasons for the non-optimality of the CFA1R. approach, the method of

thresholding the log likelihood ratio (LLR) was first, used in place of the CFAFI, fusion.

The results of thresholding likelihood ratio are shown in Figure 6.6. The outputs of the

individual detectors, the likelihood ratio detector using each filter, and the fused likelihood

ratio detector are shown for amplitudes of 6.0 and 8.0. The amplitude used for computing

the likelihood ratio was of 6.0, wtfich gave the signal template as:

I,o - I,o = (6.0, 5.5603)' = 6.0(1.0, 0.9267) t

which is only slightly different froln the LMP template (scaled), due to the non-linearity of

the morphological filter.
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Figure 6.3: Images from (a) digital (b) analog camera with partly cluttered background.

Image of the local variance of low-stop filter output, which is the measure of clutter for

images from (c) digital (d) analog camera. Histogram of the local variance of low-stop filter

output for images from (e) digital (f) analog camera.
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Figure 6.4: Operating curves for digital camera image using CFAR fusion: Assuming cor-

relation between filters with target amplitudes of: (a) 6.0 (b) 8.0 Assuming independence

between filters with target amplitudes of: (a) 6.0 (b) 8.0
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Figure 6.7: Operating curves for digital camera image using LLR thresholding, and fixed

2 1.5, and assuming independence betweenvalue of morphological variance parameter a m =

the filters, for target amplitudes: (a) 6.0 (b) 8.0

However, it was seen that for the matched signal strength of 6.0, it still did not give

desirable performance. Hence, another reason for this non-optimality was explored. It was

2 of the morphological filter output was underes-observed that the variance parameter c_,,

timated from the images. This unreliability of was because the estimation was t)efformed

using small windows around every point in the image. Furthermore, there was quantization

error, since the noise in the images was of the saine order as the gray level resolution of the

real images. However, since the morphological filter is comparatively insensitive to clutter,

2 remains approxiniatelv same throughout the image. Hence, the entire back-the value of <5,_

ground image from the digital canlera (without adding targets) was used to pre-compute the

parameter value as o-m2= 1.5. The low-stoI_ filter parameter a_ was estimated as before, since

its value does depend on the local clutter level. The correlation coefficient was assumed to be

zero. The results obtained using these parameters are much better, and shown in Figure 6.7.

Hence, it can be conchlded that the performance of CFAR approach was poor due to the

following reasons:

1. CFAR fusion is not. optimal under the condition of constant target, amplitude.

2. The morphological filter parameters are not reliably estimated from small sized win-

dows.
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Figure 6.8: Operating curves for digital camera image using CFAR approach with condition

of optimality, and fixed value of morphological variance parameter o-_,_ = 1.5, assuming

independence between the filters, where the targets have alnplitude such that the deflection

coefficient d is constant equal to: (a) 10.0 (b) 15.0

However, as shown befi)re, the CFAR approach is theoretically optimal, when the tar-

get amplitude is not constant, but is adjusted so that the deflection coefficient d given by

equation (6.17) remains constant. To check the optinlality of the CFAR approach for this

condition, another set of experimeilts was perforlned. The statistical parameters of the low-

stop filter were estimated at every pixel using the background image without the addition

of targets. The morphological filter parameters were estimated for the entire image (instead

of individual pixels). Using the parameters of the low-stop and morphological filters, the

deflection coefficient d] for a unit amplitude of the signal was computed at every pixel, and

stored as a separate image. False alarm rate was also estimated using this image as before.

For estimating mis-detection rates, targets were added to the background image. The ampli-

tude of the target, at. a particular pixel was given by d/dl where di is the flmetion of the pixel

coordinates and d is constant. The mis-detection rate was then estimated from a number of

such images. The LMP template was used for fusing the outputs of the individual filters.

The plots of the mis-detection rate against false alarln rate are shown in Figure 6.8. It. can

be seen that the fusion output is better or as good as the individual filter outputs, within

experimental error.
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Chapter 7

Detection of Translating Objects

In addition to the detection of objects on a collision course, it is useful to monitor the objects

which are crossing the aircraft. For this purpose, a system was designed to specifically detect

objects having a translational motion in the image. To distinguish translating objects from

ground or cloud clutter, the following criteria were used:

1. The object should have sufficient signal strength.

2. The object should have an image velocity greater than a threshold.

3. The object should have a consistent motion i.e.. its velocity must not change abruptly.

The system to detect translating objects has been implemented on the pipelined image

processing system, the DataCube MaxPCI described in Section 2.8 to obtain real time perfor-

mance. The system was mounted on the Air Force Total In-Flight Simulator (TIFS/NC1314)

aircraft, and flight tests were conducted by NASA with another aircraft flying in front of it.

The detection and tracking of the target aircraft were demonstrated during the flight test.

This system is divided into two stages, an image processing stage and a tracking stage.

The first stage consists of image processing steps which remove most of the clutter, and

isolate potential features which conld be translating objects. This stage involves repetitive

image operations such as convolution, pointwise operations, histograms, etc. which are

suitable for a pipelined architecture, and can be performed in integer format. Hence, these

steps are implemented on the DataCube machine. The output of this stage is a list of image

features which are likely to contain the target objects, iimluding their positions and the signal

strengths. However, the list may also contain features corresponding to background chltter,

which are not separated by the simple image processing steps of the first stage. The second
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stage tracks these features to distinguish the genuine translating objects from background

clutter using the criteria mentioned above. Since the first stage has reduced the volume of

data to be operated on, more complicated target tracking algorithms can be implemented

even on the host PC associated with the DataCube. The threshold used in the first stage

is adjusted dynamically to give a nearly constant number of features for the second stage

so that they can be processed in real time using the slower host. This matching of the

output rate of one stage to the input rate of the next stage is known as the rate constraint

criterion [5].

1. Resolution Reduction: The resolution

capable of operation in real time. The

filter mask and then down-saint)led by

7.1 Image processing stage

This stage performs the basic image processing steps to suppress clutter and extract features

which could potentially be translating targets.

of the image is reduced so that the system is

image is c()nvolved with the following low-pass

two in both horizontal and vertical directions.

.

1
310 -

256

1 4 6 4 1

4 16 24 16 24

6 24 36 24 6

4 16 24 16 24

1 4 6 4 1

Low-pass filtering suppresses high frequencies, which would otherwise have been aliased

to low frequencies by the down-sampler. Although the image resolution is reduced, the

signal to noise ratio is actually enhanced. This is because the target size is usually

greater than 2 pixels, leading to spatial integration of the target contrast.

Low-stop filtering: A low-stop filter is applied t.o the reduced image to suppress back-

ground chltter. The filter is implemented by convolving the image with the following

masks, one after the other:

1

il,ll =

14 6 41

281282

1 4 6 4 1

1
, _/2--

128

0 2 3 2 0

2 8 12 8 2

3 12 -108 12 3

2 8 12 8 2

0 2 3 2 0
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The maskM1 is a smoothing mask, which performs spatial integration for large targets.

A rectangular mask is used since the targets are expected to have a greater width than

height. Application of the mask M2 is equivalent to subtracting a smoothed image

from the input image. The overall result of the two convolutions is the subtraction

of a low-pass filter output with a larger mask from a low-pass filter output with a

smaller mask. Hence, this st.ep supl)resses uniform background intensity and weak

clutter corresponding to low frequencies, and also performs spatial integration for larger

objects.

3. Image differencing: hnage differencing is performed on the low-stop filtered images by

subtracting consecutive frames. This is equivalent to a low-stop filter in temporal

direction. Since the object is assumed to be translating, image differencing suppresses

stationary objects corresponding to background clutter. It should be noted that steps

1 to 3 are theoretically interchangeable, since they are all linear filters. However,

since these operations are performed with integer arithmetic of limited t)recision, the

particular order of the steps is used to reduce the truncation error.

4. Non-maximal suppression: Directly using the output of the previous step would give

rise to a large number of features for an extended target. Non-maximal suppression

is performed to get a single feature (or solnetimes a small number of features) for the

entire target. Pixels can have both positive or negat.ive values corresponding to bright.

and dark targets, respectively. Hence, an absolute value image is first formed, and

every pixel which is not a local maximum in its 3 x 3 neighborhood is marked. The

marked pixels are set. to zero in the origi_,al image i.e., the image before taking the

absolute values.

5. Histogram formation: To extract candidate features, the output, fl'om the above steps

should be thresholded. Furthermore, the threshold should be chosen so that the number

of features neither overloads the tracking stage, nor keeps it. unnecessarily idle. Hence,

the threshold is selected so that the number of pixels exceeding the threshold is less than

or equal to a fixed rate which matches the operation speed of the tracking stage. For this

purpose, a histogram of the image is constructed. The threshold then is determined as

the smallest pixel value for which the number of elements in the histogram bins above

this value does not exceed the fixed rate. Applying this value as the threshold would

then ensure that the number of features remains 1)ounded.
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6. Thresholding and feature output: Pixels in the image with the output value greater

than the threshold are separated as features, and their positions as well as the ampli-

tudes are transmitted to tile tracking stage.

7.2 Tracking stage

This stage maintains a list of tracks containing the frame nmnber, unique ID, position,

velocity, and amplitude. The list is empty in the 1)eginniI_g. he following steps are repeated

for every frame for which the list of features is received froln the image processing stage:

1. Track update: For each track in the list of tracks, the list of features is scanned to obtain

features in a neighborhood window around tile track position. If one or inore such

features are found, the one with the largest amplitude is selected as tile continuation

of the track. Using the coordinates (z,, z2) of this feature, as well as the current track

position (x,, x2) and velocity (u_, u2), the expected position and velocity for the next

frame is estimated using a Kalman filter. The filter is applied separately for horizontal

(i = 1) and vertical (i = 2) directions. For each direction, the state vector is given

[ ]'by Xi = xi ui , and the observation is the feature coordinate z,. The track life

n of the track is the number of frames in whicll the target has been observed, with

adjustments made in the fl'ames where the target is not observed. The lneasurement

update is given by:

,,,+(,,)

The state update is given by:

= ,,{(,,) + - (7.1)

:ri(r_ + l) = :r t(n) + u+(n)

ui(r, + 1) = ,,+(,,) (7.2)

The Kalman filter matrix K(,,) : [ It',(.,,) K._)(,,) ]" is pre-computed ,,sing the in-

verse covariance fornmlation of the Kalman filter. The computation is performed for

a number of n = 1...N, where N is large enough so that K(N) does not change

significantly with N.

The track amplitude is updated using recursive averaging according to the following

equation:

F(n + 1) = f(n) + c_F(n) (7.a)
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where F(n) and F(n+I) are the track amplitudes for the current and next frames, .f(n,)

is the feature amplitnde, and c_ is the forgetting factor. The track life l_ is itwremented

by one.

If no feature satisfying the above conditions is found in the neighborhood of the track.

tile position and velocity are ext.rapolated using only the state update. Theoretically,

this would mean that tile values of the Kalman filter matrix would have to t)e Iet:oni-

puted. To avoid such a coml)utation , the vahle of the track life _ is reduced by a factor

to apl)roxinmtely simulate the effect of having 'lost track' of the feature. The feature

amplitude is updated using .f(_) = 0 in equation (7.3).

2. Forlnation of new tracks: After all the current tracks are updated, features in the fea-

ture list are used to check for new tracks. For every feature, the list of tracks is scatmed

to see if a track is already there in its neighborhood. If not, a track is created out of

tile feature with its track life n = 1. Its position (x_,.r2) will be the same as feature

position (zx, z2), whereas velocity (Ul, u2) is initialized to zero. The actual velocity will

be computed only in the next frame.

3. Pruning the list of tracks: If the number of tracks is too large, the stage can get over-

loaded and fail to operate in real time. To eliminate this possibility, if the number of

tracks are greater than a particular number, the weakest tracks are deleted.

4. Merging similar tracks: It may hal)pen that two or more tracks lnav he formed corre-

st)ending t.o the same object. Hence, tracks which are very close to each other and have

nearly the same velocity are merged, retaining the one with the larger track amplitude.

5. Output: Tracks which satis_' the criteria of the object, including having an amplitude

larger than a threshold, as well as other factors are output a.s potential objects.

7.3 Results

The real-time image capturing, recording, and processing system were demonstrated t)v

the flight tests conducted by NASA. During tile first set of flight tests, image sequences

were captured and recorded successfiflly at the rate of 30 frames per second. The tracking

algorithms were designed and fine-tuned using these image sequences. During the next set

of flight tests, in addition to the real-time capturing and recording, the translating target

tracking algorithnl was executed concurrently at the rate of 15 fi'ames per second. Several
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Figure 7.1: Tracking algorithm al)plied on an image sequence with the target aircraft trans-

lating from right to left at a distance of 3 nautical miles. The target aircraft is located at.

the end of the track in this imago.

image sequences with the target aircraft crossing tile host aircraft were obtained. It was

observed that the system successflllly detected and tracked the translating object during the

flight tests. Figure 7.1 shows a trace of the tracking algorithm applied on an image sequence

with the target aircraft, translating from right to left at a distance of 3 nautical miles.

Table 7.1 summarizes the performance of the translating target tracking algorithm with

different distances between the host and the target aircraft, during the first set of flight

tests. The false alarm rate is Ineasured as the ratio of the total number of false alarms

throughout the sequence to the number of image frames in the sequence. The mis-detection

rate is measured as the ratio of the number of frames in which the target was missed to the

total number of frames. The false alarm rate depends on the amount and motion of clutter

in the images, whereas the mis-detection rate depends on the target size and contrast, and

therefore increases with the target distance in most cases. Since false alarms (:an be very

annoying to the pilots, a low false alarm rate was more desirable than a low mis-detection

rate. Hence, the parameters of the algorithms were selected to reduce the false alarm rate,

and were same for all the scenarios. It is possible to get a better performance by adjusting

parameters according to the characteristics (such as the clutter level) of each scenario.
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Table 7.1: The performanceof the translating target detection algorithm for a number

of target distances. The false alarm rate is the ratio of the total number of false alarms

throughout the sequenceto the numberof imageframesin the sequence.The mis-detection

rate is the ratio of the numberof framesill which the target wasmissedto the total number
of frames.

Distance (nmi) Mis-detection rate False alarm rate

1.5

1.8

2.0

2.4

3.0

4.7

5.0

5.4

0.061

0.113

0.394

0.059

0.056

0.335

0.803

0.643

0.000

0.000

0.000

0.000

0.000

0.183

0.147

0.000

The performance was relatively poor in the cases where the host aircraft rotated about

its own axes, resulting in large image motion of background features. To improve the perfor-

mance, the image motion due to aircraft rotation should be compensated using the aircraft

navigation data. If this data is mmvailable, the background motion should be modeled to

separate independent object motion. For example, Irani and Anandan [9] separated the scene

motion into planar and parallax components, and identified independently moving objects

having a significant parallax. However, since the DataCube architecture is capable only of

simple image processing operations, any such procedure would have to be performed on tile

host machine, using a feature based approach.
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Chapter 8

Conclusion

This research was focused on designing and implementing algorithms for detection of obsta-

cles in the flight path of the aircraft using the image sequences obtained from the on board

cameras. The main contributions of this research and the possible avenues of fllture work

are described below.

8.1 Contributions of this research

Basic algorithms performing signal enhancement were tested for detecting flying ob-

jects using the image sequences provided by NASA. Performance characterization of

these algorithms was conducted using simulated and real image sequences. It was ob-

served that the algorithms performed well on images with little or no clutter, but their

performance degraded in presence of clutter.

To distinguish the objects on a collision course from the background clutter, the differ-

ence in the behavior of their image translation and expansion were studied. Conditions

under which these criteria are useful were derived. Novel methods for estimating the

rates of image translation and expansion over long image sequences were designed and

tested on the image sequence with a large amount of background clutter. The approach

successfully separated the obstacle from the clutter.

Algorithm fusion to overcome limitations of algorithms was studied, and it was observed

that under proper conditions, a combination of algorithms performed better than the

individual algorithms.
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• A real-time systemusing pipelined image-processinghardwarewasdesignedto detect

objects crossingthe aircraft. The tracking algorithm to separatebackgroundclutter

from crossingobjects wasdevelopedand implementedon the host machineassociated

with the system.

8.2 Future work

Many of the research ideas, such as the use of translation and expansion, algorithm

filsion, etc. were tested individually. The future goal would be to combine these into an

integrated system for obstacle detection. Performance characterization of this system

could be done with more real image sequences.

During the estimation of image translation to discriminate a hazardous object from

background clutter, the compensation of aircraft rotation was performed using the

navigation system information. Use of background clutter to model the aircraft motion

could be explored, so that the compensation could be performed even without the

navigation system information.

False expansion occurring due to the rotation of the target aircraft can be studied.

This expansion takes place only in a particular direction, resulting in deformation

of the object in the image. Methods to distinguish this deformation from uniforin

expansion can be studied.

Gaussian models were used for studying the behavior of individual algorithms to per-

form algorithm fusion. Better models could be developed, especially in presence of

clutter, where the Gaussian models would not be as robust.

To improve the performance of crossing object detection, the image motion due to

aircraft rotation should be compensated. This could be done either using the navigation

data from the aircraft, or by modeling the image motion separate independent object

motion. Since the DataCube architecture is capable only of simple image processing

operations, such a procedure should be performed on the host machine, using a feature

based approach.

100



Bibliography

[1] N. Ancona and T. Poggio. Optical flow from 1-D correlation: Application to a simple

time-to-crash detector. International Journal of Computer Vision, 14:131 146, 1995.

[2] J. Arnold, S. Shaw, and H. Pasternack. Efficient target tracking using dynamic pro-

gramming. IEEE Trans. on Aerospace and Electronic Systems, 29(1):44 56, January

1993.

[3] Y. Baram and Y. Barniv. Obstacle detection by recognizing binary expansion patterns.

IEEE Trans. on Aervspace and Electronic Systems, 32(1):191 197, January 1996.

[4] Y. Barniv. Dynamic programming solution for detecting dim moving targets. IEEE

Trans. on Aero.spaee and Electronic Systems, 21(1):144 156, January 1985.

[5] J. S. Bird and M. M. Goulding. Rate-constrained target detection. IEEE Trans. on

Aerospace and Electronic Systems, 28(2):491 -503, April 1992.

[6] D. Casasent and A. Ye. Detection filters and algorithm fusion for ATR. IEEE Trans.

on Image Processing, 6(1):114-125, January 1997.

[7] E. Francois and P. Bouthemy. Derivation of qualitative information in motion analysis.

Image and Vision Computing, 8(4):279 288, November 1990.

[8] G. C. Holst. CCD Arrays, Cameras and Displays. JCD Publishing, Winter Park, FL,

1996.

[9] M. Irani and P. Anandan. A unified approach to moving object detection in 2D and

3D scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(6):577-589,

June 1998.

101



[10] T. Kanungo, M. Y. Jaisimha, J. Palmer, and R. M. Haralick. A methodology for

quantitative performance evaluation of detection algorithms. IEEE Trans. on Image

Processing, 4(12):1667 1674, December 1995.

[11] R. Kasturi, O. Camps, L. Coraor, K. Hartman, T. Gandhi, and M.-T. Yang. Perfor-

mance characterization of target detection algorithms for aircraft navigation. Technical

report, Dept. of Computer Science and Engineering, The Pennsylvania State University,

October 1998.

[12] R. Kasturi, Y.-L. Tang, and S. Devadiga. A model-based approach for detection of

runways and other objects in image sequences acquired using an on-board camera.

Technical Report CSE-94-051, Department of Computer Science and Engineering, Penn

State University, August 1994.

[13] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.

Prentice Hall, Upper Saddle River, N J, 1993.

[14] S. S. Krause. Avoiding Mid-Air Collisions. TAB books, Mc Graw Hill Inc., Blue Ridge

Summit, PA, 1995.

[15] R. C. Nelson and J. Y. Aloimonos. Obstacle avoidance using flow field divergence. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 11(10):1102 1106, 1989.

[16] K. Nishiguchi, M. Kobayashi, and A. Ichikawa. Small target detection from image

sequences using recursive max filter. In Proc. SPIE, volume 2561, pages 153 166, July

1995.

[17] H. V. Poor. An Introduction to Signal Detection and Estimation. Springer-Verlag, New

York, NY, 2nd edition, 1994.

[18] S. M. Tonissen and R. J. Evans. Performance of dynamic programming techniques for

track-before-detect. IEEE Trans. on Aerospace and Electronic Systems, 32(4):1440-

1451, October 1996.

[19] D. Wood. Jane's World Aircraft Recognition Handbook. Jane's Information Group Ltd.,

Coulsdon, UK, 1992.

102





Part III

Real-Time Implementation of Obstacle Detection Algorithms

on the Datacube MaxPCI Architecture

Abstract

A system was designed to capture image sequences from a digital camera, record the

images into a high speed disk array, and process the images to perform real-time obstacle

detection. A set of obstacle detection algorithms were chosen and implemented on the same

system. The objective was to detect any potential obstacle in the aircraft's flight path by

analyzing the images captured using an on-board camera in real-time. Using this system, real-

time image data was recently obtained successfully from flight tests conducted at NASA

Langley Research Center. It was observed that the system successfully detected and tracked

translating objects during the flight test. The recorded digital image sequences are valuable for

further research on obstacle detection algorithms under different conditions.
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Chapter 1

Introduction

A proper hardware platform should be chosen to implement the obstacle detection

algorithms in real-time. The fastest choice is a customer designed multi-processor circuit board,

but it's very expensive and less flexible since the circuit board needs to be changed to reflect the

modification of the algorithms. To optimize the performance/price ratio, a general purpose real-

time image processing system may be considered as the processing unit of the on-board synthetic

vision system. The Datacube MaxPCI, a general purpose real-time image processing system

with pipelined image processor, is a cost-effective way to meet high-throughput low-latency

demands and has become popular among some researchers working on real-time vision

problems. The New Technology Disk (NTD) available with the Datacube MaxPCI has the

required ability to perform high-speed digital image recording, which is also an important part of

our project. Moreover, the obstacle detection algorithm should be reliable and fast so that even a

small target can be detected in real-time. A set of obstacle detection algorithms were chosen and

implemented on a Datacube MaxPCI system.

Chapter 2 gives an overview of the system performing real-time image capturing, recording,

and processing. Chapter 3 deals with the implementation issues of obstacle detection algorithms

on the MaxPCI system. Chapter 4 explains the implementation of the obstacle detection

algorithms on the old MaxVideo system. Finally, a conclusion is given in Chapter 5.



Chapter 2

System Overview

A system was designed to capture image sequences from an on-board digital camera, record

the images into a high speed disk array, and process the images using multiple pipelined

processors to perform real-time obstacle detection. Using this system (shown in Figure 2.1),

real-time digital image data was recently obtained successfully from flight tests conducted at

NASA Langley Research Center. These image sequences are valuable for further research on

obstacle detection algorithms under different conditions (size, contrast, background etc).
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Figure 2.1: The system consists of a Windows NT workstation with

two internal Datacube MaxPCI image processing cards, and one

New Technology Disk (NTD) Recorder. The sensor consists of a

KODAK Megaplus ES1.0 digital CCD camera and a PENTEX l-

inch lens with motorized aperture control.



2.1 Image capturing using remote digital CCD camera

and motorized lens

A critical component of the vision system is the imaging sensor. A Kodak Megaplus

ES1.0 charge coupled device (CCD) digital camera with a Cosmicar/Pentax 1 inch (50 mm)

motorized lens was chosen, since digital CCD cameras offer superior performance compared to

their analog counterparts. Digital cameras are also highly immune to the spatial and temporal

artifacts caused by transmission-line noise. The Kodak ES1.0 captures 30 frames per second

with a 1K x 1K resolution in a 8 bit format (256 gray levels) [7]. It was mounted in the cockpit

of a modified Convair C-131 aircraft, called the Total In-Flight Simulator (TIFS). Because the

recording system was located in the aft portion of the aircraft, a 100 foot digital data cable

transferred the image data signals to the recording system. The synchronized clock signals

generated by the camera were also transferred through the data cable. A good quality cable with

low capacitance prevents asynchronism and noise that can occur with lengthy cables.

The dynamic range of the captured images was very large due to the variations in factors

such as the sun orientation, cloud conditions, and aircraft altitude. To prevent saturation or very

low gray levels in the captured images, a motorized aperture lens was installed on the camera

and a remote aperture control box next to the recording system (100 feet from the camera).

With this motorized aperture, the operator manually adjusted the aperture during the flight. The

camera exposure control software provided by Kodak was not used because that could

inadvertently produce blurred images (caused by extended exposures) or unacceptable noise

levels (caused by brief exposures). Furthermore, it was easier for the operator of these

experiments to use a manual knob to change the lens aperture rather than use the software to

change the exposure time of the camera.

2.2 Real-time recording of digital image sequences using

new technology disk

A typical flight sequence with a target aircraft in the field-of-view can last several

minutes and produce thousands of 1K x 1K images. One means of reducing the massive amount



of disk storage space to hold these images is to use compressive algorithms. However, because

it was desirable to analyze the raw characteristics of the camera, uncompressed images were

stored. For this task, a system recording data at a rate of 30 MB/second (or 1.8 GB/minute) was

required.
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Figure 2.2 : Our system with two Datacube MaxPCIs and a NTD. The

system is a Pentium PC workstation, consisting of two Datacube

MaxPCIs and one New Technology Disk (NTD) Recorder. The first

MaxPCI is equipped with a storage 96 and a General Purpose PSMOD.

The second MaxPCI is equipped with a Convolver 200 and another

General Purpose PSMOD.

To satisfy these large bandwidth and storage requirements, a Pentium 233 workstation

(running Windows NT) with two internal MaxPCI cards from Datacube, Inc., and an external

disk array, called the New Technology Disk (NTD), were used (shown in Figure 2.2). The

MaxPCI is a real-time image processing card with pipelined image processors. It provides a

cost-effective way to meet high-throughput, low-latency demands. The data cable was

connected from the digital camera to one of the MaxPCI cards. The camera sends images

through two channels, with odd lines in one channel and even lines in the other channel. The

MaxPCI card receives the images through these two channels, with a throughput of 15 MB/sec

from each channel. The MaxPCI card was configured so that the two channels are merged to

form complete images in the MaxPCI's memory. Then the images are sent via the MaxVGA bus

to the MaxVGA card for display, and via the PCI bus to the Adaptec AIC-1160 disk controller

card for storing. Transfer to the disk controller card was accomplished using High Speed Image

Access (HSIA), a technique that moves data directly back and forth between the disk controller

4



card and the MaxPCI's memory, without being copied in an intermediate memory buffer. This

eliminates the copying of data to host memory as it would be required by other disk storage

products. Finally, the images are transferred through a Fibre Channel (FC) cable to the NTD,

where the images are stored. The Fibre Channel is a technology for transmitting data between

computer devices at a data rate of up to 1 GB/sec. Since it is three times faster than the Small

System Computer Interface (SCSI), Fibre Channel is expected to replace SCSI as the

transmission interface between servers and storage devices. The NTD is a Redundant Array of

Independent Disks (RAID) sub-system that enables high-speed lossless digital image recording

and playback. The NTD used was a four disk array, with 16 GB per disk. With the FC option,

it is possible to achieve NTD transports in excess of 32 MB/sec. To achieve the highest access

speed, there is no formatting of data storage on the NTD. All images are recorded as plain raw

data to the consecutive physical sectors of the NTD. The NTD can record and playback images

at a real-time frame rate up to 40MB/sec.

Datacube offers a helpful graphical user interface (GUI) called MaxLab to control the NTD.

The interface of the MaxLab is like a VCR panel. MaxLab was used in the first flight test for

image data recording. However, MaxLab is a commercial package useful only for NTD control,

so no additional image processing tasks can be performed simultaneously while recording.

Another C-callable library, NtdlfLib, is also available for programmers to create their own NTD

access programs according to their needs. The NtdIfLib is integrated with ImageFlow, a C-

callable library that configures and manages data transfers on the MaxPCI to perform real-time

image processing. With the power of the NtdlfLib and hnageFIow programming, the system

can not only record the digital images in real-time, it can also be extended to perform several

image processing algorithms concurrently. It should be noted that it is not a simple job to

develop a parallel program on the MaxPCI since the programmer must know a good deal about

the underlying hardware. Moreover, since there is no useful debug tool for ImageFlow at this

time, the programming task using ImageFlow is time-consuming. However, a very satisfactory

system can be developed with appropriate effort.



2.3 Aircraft maneuvers in the flight tests

Two aircraft were involved in these flight tests, which were based at NASA Langley

Research Center. The TIFS was the host aircraft, and it carried the Kodak camera and Datacube

computer. A Beechcraft King Air B-200 was the target aircraft. The purpose of the flight tests

was to obtain images containing different maneuvers conducted by the target aircraft. For all

maneuvers, the host aircraft had an altitude of 3500 feet and a speed of 159 knots. Two classes

of maneuvers were flown.

In the translating maneuver (shown in Figure 2.3(a)), the target aircraft translated (moved)

in the image sequence. It was performed with the target aircraft crossing perpendicular to the

direction of motion of the host aircraft. The speed of the target aircraft was 159 knots. This

maneuver was performed for different vertical and horizontal separations. Images were recorded

with the target aircraft 500 feet below and 500 feet above the host aircraft at distances of about

1, 2, 3, 4 and 5 nautical miles. Recording ended when the target aircraft left the field of view of

the camera.

In the contraction maneuver (shown in Figure 2.3(b)), the target aircraft maintained a fixed

position in the image surface as it flew away from the host aircraft. The target aircraft speed

was 209 knots. Images were recorded with the target aircraft ascending at 500 feet per minute,

descending at 500 feet per minute, or maintaining a fixed altitude. Recording ended when the

target aircraft was about 5 miles from the host aircraft. The images from this sequence can be

T
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Figure 2.3: Two kinds of flight maneuvers. (a) Translating maneuver: the

target aircraft crossed in front of the host aircraft with a vertical separation

of 500 ft. (b) Contraction maneuver: the target aircraft maintained a fixed

position in the image window by flying directly away from the host aircraft.

The target aircraft maintained the same altitude as the host aircraft. (Not

drawn to scale.)



played backwards to simulate the target aircraft motion that occurs with a collision.

Two flight tests were conducted over a several day period in January and September, 1999.

The first flight test focused on image capturing and recording, while the second flight test

performed image capturing, recording, and processing concurrently. By recording images over a

multiple day period in each flight test, a range of contrast conditions was obtained. In addition,

the background of the target varied depending on its altitude. This approach provided a

comprehensive set of images for testing the image processing algorithms under different

conditions.

2.4 Real-time image processing using MaxPCI image

processing cards

The MaxPCI is a real-time image processing card with pipelined processors

manufactured by Datacube Inc. It uses a Windows NT workstation as a host machine and

supports multiple simultaneous pipelines that can be switched by software at read-time frame

rates. Each MaxPC! card consists of five modular hardware devices and a set of memories

connected by a large programmable switch as shown in Figure 2.4. The first device is the

Host machine:
Pentium PC

!
MaxAcq MaxVGA [PClbus Port

! I !
Crosspoint Switch

I I I I
Advanced

Memory
(AM) x5 Arithmetic Look-Upl Processing&] Unit Table Storage Module
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Figure 2.4: Each MaxPCI is composed of a MaxAcq acquisition unit,

a MaxVGA display unit, five Advanced Memorys (AM), two

Arithmetic Units (AU), two Look-Up Tables (LUT) and two
PSMOD add-on modules.



MaxAcqacquisitionunit that receiveseithera digital or ananalogsignalfrom thecamera. The

seconddeviceis the MaxVGA displayunit that outputsthevideo signalto the MaxVGA video

card. The third device is the Arithmetic Unit (AU) which performsarithmetic and logical

operations. The fourth device is the Look-Up Table (LUT) that performs pixel value

transformations. The fifth device is the Advanced Memories (AM) component which can

receive an image from the cross-point switch and transmit another image to the cross-point

switch at the same time. The AM also allows the host computer to read or write pixels via the

PCI bus. Moreover, each MaxPCI may be extended by the selection of two add-on processing

and storage modules (PSMOD). The variety of the PSMODs enables users to balance their

needs of processing, memory and resources. All of these devices operate on pixel arrays at 40

MHz. The MaxPCIs communicate with each other through two buses called Maxbuses. Each

Maxbus has a bandwidth of 160 MB/sec. The MaxVGA is a separate display card, which inputs

images from the MaxPCI through a private MaxVGA bus. Hence, the display can be accelerated

without interfering with the PCI bus traffic. ImageFlow programming allows the programmer to

specify connections between the processing elements inside hardware devices, as well as

between ports on the cross-point switch. It also provides access to attributes associated with

each processing element.

2.5 Obstacle detection algorithms

Obstacle detection using image processing requires robust, reliable and fast techniques.

These techniques should provide a high probability of detection while maintaining a low

probability of false alarm in noisy, cluttered images of possible targets, exhibiting a wide range

of complexities. The size of the image target can be quite small, from sub-pixel to a few pixels

in size. Furthermore, the detection algorithm must report such targets in a timely fashion,

imposing severe constraints on their execution time. Finally, the system must not only work

well under the controlled conditions found in a laboratory and with data closely matching the

hypothesis used in the design process, but it must be insensitive--i.e., must be robust -- to data

uncertainty due to various sources, including sensor noise, weather conditions, and cluttered

backgrounds.



Over the past year, several algorithms were combined to form a composite system for

detection of contracting targets [5]. The steps that form this composite system are:

(1) Temporal Averaging: For objects in a uniform background, having a very small image

motion, such as those on a collision or near-collision course. When the target motion is

small, temporal averaging improves the SNR and reduces the processing rate required for

subsequent steps.

(2) Pyramid construction with low-stop or morphological filtering: This is a pre-processing

step in which a pyramid is constructed to accommodate different sizes and velocities of

objects. Low-stop filtering [6] is performed at each pyramid level to remove background

intensity. There is an option to perform morphological filtering [2] in place of low-stop

filtering at every pyramid level. This can be done when the background contains clutter

due to clouds and/or ground to improve performance.

(3) Dynamic Programming: A dynamic programming algorithm [3] is performed on pre-

processed frames to integrate the signal over a number of frames by taking the target

motion into consideration.

It should be noted that one or more of these steps can be bypassed so that any of the basic

algorithms described above can be tested individually using the same system. The above target

detection algorithms were implemented on the Datacube MaxPCI system.

In addition to detection of objects on a collision course, it is useful to monitor the objects

that are crossing in front of the aircraft. For this purpose, a system was designed to specifically

detect objects which have a translating motion in the image. To distinguish translating objects

from ground or cloud clutter, the following criteria was used: (1) The object should have

sufficient signal strength. (2) The object should have an image velocity greater than a threshold.

(3) The object should have a consistent motion.

The algorithm to detect translating objects has also been implemented on the Datacube

MaxPCI system to obtain real time performance. The system was mounted on the host flight

aircraft and performed well in detecting and tracking objects. The algorithm is divided into two

concurrent parts. These parts are: (1) Image processing steps which remove most of the clutter,

and isolate potential features which could be translating objects. These steps consist of temporal

differencing, low-stop filtering, non-maximum suppressing (NMS) and feature extraction.

These image operations are suitable for a pipelined architecture, and can be done in integer



format. Hence,thesestepsareimplementedon theDatacubeMaxPCImachine. The output of

this part is a list of image points which are likely to contain the target objects, along with their

signal strengths. (2) Tracking these features using a Kalman filter to distinguish genuine

translating objects from background clutter which was not separated by the simple image

processing steps of the first part. Since the first part has reduced the volume of data to be

operated on, more complicated target tracking algorithms can be implemented even on the host

PC associated with Datacube. The threshold used in the first part is adjusted dynamically to give

a nearly constant number of features for the second part so that they can be processed in real

time using the slower host. This is known as the rate constraint [4].

2.6 Backup from the new technology disk to a high

capacity tape driver

The total capacity of the NTD is 64 GB, which allows 36 minutes of real-time recording

of 1K x 1K images at 30 frames per second. This capacity is sufficient for the capturing test of

each flight. However, after each flight, it is necessary to backup the contents of the NTD, so the

NTD space could be used again for the next flight. For this, the NTD was temporarily removed

from the aircraft and directly connected via fibre channel to another Windows NT server with a

64 GB local hard disk array and a Seagate Sidewinder 200 high capacity tape drive with

autoloader ability. The backup process can be divided into two steps. The first step is to copy

the contents of the NTD into the hard disk of the server. Because there is no formatting of data

storage on the NTD, the Windows NT cannot access the NTD directly. Therefore, a C-callable

low-level library, called NtdLib, is used to access the NTD. The second step is to backup the

data from the local hard disk to the high capacity tape drive. The Seagate Sidewinder 200 is a

high-capacity tape autoloader that combines Advanced Intelligent Tape (AIT) and autoloader

technology to provide data storage for high-end computer systems. The autoloader technology

enables the loading of four cartridges at the same time and it can exchange the cartridges

automatically. The native (uncompressed) capacity of each cartridge is 25 GB, and three

cartridges were required for each NTD backup. The speed of the first step is limited by the

throughput of the local hard disk, while the speed of the second step is limited by the tape drive.
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It was observed that the first step takes about three hours to complete while the second step takes

another eight hours. Since the NTD is not needed in the second step, it is available for the next

capturing task after the first step. Moreover, since both steps can be scheduled to execute

automatically, no human interaction is required during the whole process of the backup.
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Chapter 3

Implementation of Obstacle

Detection Algorithms on MaxPCI

3.1 Available resources

Our Datacube IP system is equipped with two MaxPCI IP cards. Each card has multiple

pipelined processors, memory and other resource. Up to two PSMODs can be installed on each

MaxPCI. The first MaxPCI in the test flight system was equipped with a Storage96 (ST) and a

General Purpose (GP) PSMOD, while the second MaxPCI was equipped with a GP and a

Convolver200 PSMOD. Table 3.1 lists the main resources in the first MaxPCI card. Table 3.2

lists the main resources in the second MaxPCI card. It should be noted that ST is the same as

AM while GP is similar to AU. The only difference between AU and GP is that each AU is

Table 3.1: The number of main resources in the fn'st MaxPCI card.

MaxPCI #0 Resource Abbreviation Amount (ID)

Arithmetic Unit AU 2 (0-1 )

Arithmetic Memory AM 5 (0-4)

Look-Up Table LUT 2 (0-1)

Delay Element DLY 2 (0-1 )

General Purpose add-on PSMOD GP 4 (0-3)

Storage96 add-on PSMOD ST 6 (0-5)

Analog Acquisition Module QA 1

12



independent of one another while GPs are hardwired to be paired sequentially. This implies that

once GP0 is used, the output of GP0 will feed into GP1 automatically. Although GP1 can be

configured to do nothing but only pass through the input data, GP1 will be occupied and cannot

be used for any other purpose to avoid resource conflict. Another important constraint is the

communication channels (CH) between the two MaxPCI cards. There are only eight CH

channels, with eight bits in each channel. Thus, the traffic between two MaxPCIs should be

minimized to preserve the precious CHs. The first MaxPCI was equipped with QA acquisition

module to input an analog signal, while the second MaxPCI was equipped with a QI acquisition

module to input a digital signal from a camera.

Table 3.2: The number of main resources in the second MaxPCI card.

MaxPCI #1 Resource Abbreviation Amount (ID)

Arithmetic Unit AU 2 (0-1)

Arithmetic Memory AM

Look-Up Table LUT

Delay Element DLY

Convolver200 add-on PSMOD VD

General Purpose add-on PSMOD

Digital Acquisition Module

GP

QI 1

5 (0-4)

2 (0-1)

2 (0-1)

1

4 (0-3)

3.2 Pipelined cost model

Experiments were performed on the MaxPCI system to analyze the delay of ImageFlow

pipes. The result shows that the total delay of processing is equal to the sum of each serial

pipe's delay, while each serial pipe's delay is proportional to the number of input pixels. It is

concluded that the delays of each schedule mainly depends on its input image size and the

number of sequential pipes. The following cost function for processing delay is obtained from
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the experiments. Suppose a subtask Tk is divided into

{pipekl , pipek2 ,. .., pipek, }, then

tl

Delays(Tk ) = _ Delay(pipeki ) , forl <_k < Cps
i=1

Oelay(pipe_.i ) = Cki + ( Tcc × nk_) + (Tcc × she)

Delavs(T k) is the total delay of the subtask Tk.

Cps is the number of sequential pipes.

Delay(pip%) is the delay of the sequential pipe pipe z.

where Ck, is the configuration time of pipek_.

Tcc is the clock cycle time.

nk_ is the number of gates in pip%. (the complexity of the pipe)

ski is the size of input image of pipek_.

n sequential pipes:

3.3 Pipelined scheduling

The concurrency can be either spatial concurrency or temporal concurrency. The spatial

concurrency (parallelism) means that tasks can be executed by several processors

simultaneously, while the temporal concurrency (pipelining) means that chains of tasks can be

divided into stages, with every stage handling results obtained from the previous stage. The

temporal concurrency can be exploited to increase the throughput whenever a long sequence of

image processing tasks is applied on a continuous image sequence.

Consider an example shown in Figure 3.1. For simplicity, suppose each task has the

same computation cost (40 ms). On a single processor case shown in Figure 3. l(a), the total

iteration period is 200 ms (5 FPS). For scheduling techniques that only consider parallelism

(shown in Figure 3. l(b)), only the three middle tasks can be sped up, thus the critical path limits

the iteration period to 120 ms (8.3 FPS). For scheduling techniques that only consider

pipelining (shown in Figure 3.1(c)), the middle stage becomes the bottleneck, limiting the

iteration period to be 120 ms (8.3 FPS). In fact, the task graph has both spatial and temporal

concurrency. To maximize the throughput, both types should be exploited. Figure 3. l(d) shows

the scheduling of three pipelined stages, with the second stage having three tasks executed in

parallel. If five processors are available, this partition is optimal, resulting in an iteration period
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of 40 ms (25 FPS). Therefore, an ideal scheduling strategy should exploit both spatial and

temporal concurrency present in the task graph.

Moreover, there are two levels of pipelined scheduling. The first level is the pixel level

pipelining, or the spatial pipelining. The spatial pipelining means that an image is fed into a
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processing pipe pixel by pixel. Suppose there is a processing pipe using three processors, like

figure 3.2(a). Whenever a new pixel is fed into pl, an old pixel will be fed from pl to p2, so

that p2 can process the old pixel while p l processes the new pixel. Since the MaxPCI are

designed with pipelined processors, spatial pipelining is ready as soon as we declare, configure

and fire a processing pipe. The second level is the frame level pipelining, or the temporal

pipelining. The temporal pipelining means that continuous image frames are fed into several

processing pipes frame by frame. Suppose there is a processing pipe requiring nine processors.

We can divide the pipe into three different pipes, each pipe with three processors. Then image

frames can be fed into these pipes in a pipelined way, like Figure 3.2(b), so that three pipes can

be executed concurrently. Both spatial and temporal pipelining can be exploited at the same

time in this example. Figure 3.2(c) shows that three pipes execute concurrently (frame level

pipelining), while three processors work concurrently in each pipe (pixel level pipelining).

In order to use the spatial pipelining, a processing pipe cannot flow through the same

resource more than once. The resource includes processor (AU), memory (AM), look-up table

(LUT) and MaxPCI channels (CH). In order to use the temporal pipelining, more care should be

taken to avoid resource conflict. Since several pipes execute concurrently at the same time by

temporal pipelining, none of these pipes can share the same resource. Moreover, the number of

concurrent pipes is also limited because there are only six internal clocks in each MaxPCI.

The design of pipeline scheduling can be divided into three steps. The first step is to

partition the dependency graph into several pipeline stages with minimum cut value. The second

step is to allocate resources for each pipeline stage. The final step is to schedule the operations

inside each pipe stage using allocated resources. Currently, all these steps are implemented and

optimized manually by performing an exhaustive search on all possible schedules, and

calculating the processing delay of each schedule using the cost function. The schedule with

minimum processing delay is the best schedule. However, this brute-force method is time-

consuming and impractical for large graphs. A scheduling heuristic should be developed to

approximate the optimal schedule according to the cost function in acceptable time.
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3.4 Basic concept of MaxPCI programming

There are two ways to program the Datacube MaxPCI hardware. ImageFlow 0 is a low-

level library of C-callable functions that configure and manage data transfers on the Datacube

MaxPCI pipeline processing devices. ImageFlow allows the programmer to specify connections

between the processing elements inside hardware devices, as well as between ports on the

crosspoint switch. It also provides access to attributes associated with each processing element.

Programmers cannot simply state that two image streams are to be added; they must specify

which ALU is to be used, where in memory the images are stored, and the path the images will

take to reach the ALU. It's a programmer's job to handle resource conflicts. On the other hand,

Datacube Wit is a high level package that allows image processing computations to be described

in terms of coarse-grained dataflow graphs. With the Datacube Wit, programmers no longer

have to specify how images will be stored in memory, what paths they will take through the

switch, which computational elements will perform a specific function, or how many

computational resources there are. If there is any resource conflict in the graphs, the Datacube

Wit scheduler detects the conflict automatically and schedules the jobs sequentially to solve the

conflict. However, Datacube Wit generalizes the resources mapping and cannot take full

advantage of the MaxPCI hardware. Moreover, Datacube Wit cannot support system with

multiple MaxPCI cards and is not a mature product at this time. In our project, ImageFIow was

used to develop optimized programs of all the obstacle detection algorithms.

An algorithm should be defined as multiple parallel pipes to accomplish the desired tasks

efficiently. These algorithms are then mapped to a sequence of pipeline processing elements.

The basic steps 0 to program each ImageFlow pipe are explained as follow.

Attaching Surfaces

The source memory buffers (called surfaces) at the beginning of a pipe are attached to

the transmission gateway. The destination surfaces at the end of a pipe are attached to the

receiving gateway. Gateways are always connected to data surface stores. While there can be

multiple data surface objects on a single surface store, there can only be one data surface object

attached to a gateway at a time. Attaching the particular data surface to the gateway makes

explicit which data surface object will participate in the pipe.

Connecting Pipes
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After the pipeline processingelementsare defined, processingpipelines are built by

settingprogrammableswitches,routing thedata throughtheappropriatesequenceof elements,

andtying multiple elementstogetherintoa processingpipeline. Theattributesof eachpipelined

processingelementaresetsothattheelementperformsthedesiredprocessingoperations.

Creating Pipes

Pipes should only be created after the pipe has been connected, its elements'

programmable attributes have been set, and gateways have been attached to all its surfaces. The

pipe creation function takes the destination surface objects as its first argument, which can be

either single destination or multiple destinations. The function's second argument is its trigger

type. This can be "single shot" which transfers a single frame of image data, or "continuous"

which transfers image data continuously.

Arming Pipes

Arming the pipe is performed after the pipe set-up work is complete. The arm command

initiates PC ImageFIow tracing back through all the connections and attributes that were set to

determine the exact organization and structure of the pipe. PC ImageFlow then calculates all the

correct register loads for configuring the IP system hardware to match your software settings,

and finally makes the register loads. After arming, the pipeline has been constructed, but data

has not begun to flow.

Firing Pipes

The actual image processing tasks are performed by firing data through each of these pipes.

The pipes actually start the data transfer from the source surfaces to the destination surfaces.

Data can be fired though the pipe as either a single shot or a continuous image sequences.

Every ImageFlow program should have at least three pipes, the acquisition, the

processing and the display pipe. The acquisition pipe obtains image sequences from the camera

while the display pipe offers a stable output for the monitor. In many applications, it's too

complicate to handle the whole processing in one pipe, thus, the processing is usually partitioned

into many pipes.
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3.5 Advanced features of MaxPCI programming

3.5.1 Pipe altering thread

One of the most important features of ImageFlow programming is the Pipe Altering

Thread (PAT). The use of PAT can reduce re-arm time for a pipe, and is vital to efficient

applications. When the pipe is armed, all the delays and configuration information will be

calculated and this consumes a significant part of the execution time. With a PAT, these steps

are performed in advance and the results of the calculation are stored, and then loaded when the

pipe is armed. Of course, the loading time is very fast compared to the time for all the

calculations of the arming operation, and that is the advantage of the PAT. PAT provides an

option to speed up the image processing by pre-calculating the pipe delay and parameter setting.

However, it also increases the complexity of the |mageFlow programming.

3.5.2 Double-buffering

Double-buffering can be helpful when consecutive continuous pipe transfers run at

different frame rates. For example, our camera has an acquisition rate of 30 frames per second

and the MaxPCI has a processing rate of 40 frames per second. With mismatched frame rates

like these, the read can outrun the write, producing read-crossing-write errors that result in splits,

or jumps in moving objects in the processed image. To eliminate problems like this, and to

improve the overall system performance, we may consider using double-buffering. In double-

buffering, separate buffers for read and write operations are created on a single memory surface.

While one frame is being written to the surface, the previous frame can be read out. The read

must wait for the completion of the write. Then the buffers are swapped, the write buffer

becomes the read buffer, and vice versa. The double-buffering technique is used in our

implementation whenever the MaxPCI records to the NTD, playbacks from the NTD, and

acquires from the camera.
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3.5.3 High speed image access

High Speed Image Access (HSIA) is a technique that moves data directly back and forth

between the disk controller card and the MaxPCI's memory, without being copied in an

intermediate memory buffer. This eliminates the copying of data to host memory as it would be

required by other disk storage products. The HSIA port on the MaxPCI offers good

performance in accessing image data via the PCI bus. HSIA also supports image data transfer

between the host memory and the MaxPCI's memory. An ImageFlow data transfer pipe can be

configured to perform eight, sixteen, or thirty-two bit HSIA transfers using one, two, or four

image memories in MaxPCI. HSIA enables data transfer pipes to be declared inside a PAT, thus

increasing the transmission speed and programming flexibility.

3.6 Detection of translating targets

The implementation of detection for translating targets can be divided into three

subsystems: the record/playback subsystem, the image processing subsystem, and the tracking

subsystem. The first and second subsystems are implemented on Datacube MaxPCI cards, while

the third subsystem is implemented on the host CPU. All three subsystems should be executed

in parallel to make the whole system run as fast as possible. Hence, care should be taken to

avoid any resource conflict and reduce the communication between subsystems.

3.6.1 Recording/Playback subsystem

Both the recording and playback portions of the record/playback subsystems need to

handle double-buffering, because the NTD operates at a faster rate than the MaxPCI.

Recording

Real-time image recording is also an important issue in our project. The Kodak camera

generates data on two channels. One channel contains odd rows, while the other channel

contains even rows. The NTD can also read from two buffers. However, the NTD expects that

one buffer contains odd columns, while the other buffer contains even columns. In order to
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solve this conflict, two channels acquired from the camera should be merged into one l kxlk

image using PA G BOOL, then be separated into two buffers vertically (shown in Figure 3.3).

PA G BOOL is a small hardware element that can merge two images using a simple logical

operation. The merged image is also useful for display purposes. The HSIA port on the

MaxPCI offers good performance in accessing image data via the PCI bus.

--_ Kodak Camera ES 1.0 ]

"-_ Odd rows_ channel }---]

,I

Even rows channel _-_

t _ Whole frame _ IPSubsystem I

Odd columns channel ]

Even columns channel

l NTD Controller ]

(a)Algorithm

Odd Rows Even Rows

LP_-_-_oo'o1
PA_OP47

Odd Columns Even Columns

I PA_DISP_MEM
I NTD Controller 1

(b) Implementation

Figure 3.3: NTD Recording.
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Figure 3.4: NTD Playback.
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Playback

Real-time playback from the NTD is useful for algorithm testing and development.

Basically, the implementation of playback is similar to recording, with a reverse order of

pipelined connections (shown in Figure 3.4). In fact, the implementation of playback is simpler

because the camera is no longer necessary, and we can skip the acquisition pipe.

3.6.2 Image processing subsystem for translating targets

This subsystem performs the basic image processing steps to suppress clutter and extract

features which could potentially be translating targets. The image processing subsystem is the

most complicate subsystem, and occupies the most resources. Figure A.5 shows an overview of

the image processing subsystem.

Temporal differencing

Image differencing was performed on the low-stop filtered images by subtracting

consecutive frames. This is low-stop filtering in temporal direction. Since the object was

assumed to be translating, image differencing would suppress stationary objects corresponding to

background clutter. It should be noted that the first three steps are theoretically interchangable,

since they are all linear filters. However, since these operations were performed with integer

arithmetic of limited precision, care was taken to reduce the truncation error to a minimum. The

Am 1_2 and Am 1_3 were used as a temporal buffer to store the last flame and the flame before

last flame (shown in Figure 3.5). The difference image was obtained by subtracting the flame

before the last flame from the current frame.

Sub-sampling

Sub-sampling was used to divide the image size by a factor of two, so that the system

was capable of execution in real time. Low-pass filter was performed before down-sampling to

reduce the loss of sub-pixel information. This step reduced the resolution of the image by two.

However, since the target size was usually greater than two pixels, this step actually enhanced

the signal to noise ratio due to the spatial integration performed by the low-pass filter. A 5x5

Gaussian Iowpass filter was implemented using the VD_NMAC A in the Convolver200 shown
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in Figure 3.6. Sub-sampling was performed by adjusting both horizontal and vertical zoom

factors of the receiving gateway in the AM 14.
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Figure 3.5" Temporal Differencing.
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Figure 3.6. Sub-sampling.

23



Low-stop filtering

Low-stop filter was used to suppress the background clutter. The filter was formed by

subtracting a low-pass filter of large size from a low-pass filter of a much smaller size. The

filter mask used is shown in Figure 3.7. The filter effectively subtracts from every pixel the

mean of its neighborhood, thus suppressing uniform background intensity and weak clutter.

Since a half set of Convolver200 resources was occupied by the step of sub-sampling, only 100

points of Convolver200 (VD_NMAC_C and VD_NMAC_D) can be used in this step. In order

to use these 100 points efficiently, two sequential 7x7 low-stop filters were used to simulate a

big 13x13 kernel low-stop filter.

Non-maximum-suppressing

Non-maximum-suppressing (NMS) was used to extract the local maximum. If the

magnitude of a pixel was not greater than all of the neighbor magnitudes, then the magnitude of

the pixel was set to zero. After applying NMS, the number of final features can be reduced and

the overall throughput can be increased. A 3x3 NMS was implemented by subtracting the

original image from the image after 3x3 dilation. It is required to detect both positive and

negative targets. However, two sets of 3x3 dilation would consume a lot of resources, especially

AU. In order to save precious resources, an absolute operation was performed before NMS, so

that only one set of dilation was required (shown in Figure 3.8).

Histogram accumulation and automatic threshold selection

To extract candidate features, the image obtained from the above steps should be

thresholded. Furthermore, the threshold should be chosen so that the number of features neither

overloads the tracking subsystem, nor keeps it unnecessarily idle. Hence, the threshold was

selected so that the number of pixels exceeding the threshold was less than a fixed rate that

matches the operation speed of the tracking subsystem. For this purpose, a histogram of the

image was used. The HP in MaxPCI can generate a general histogram. The histogram consists

of 256 bins. Each bin occupies two bytes. Then the histogram was accumulated using the

AU0_I to find out the threshold value. The LUT0_0 was configured according the automatic

selected threshold value. Finally, pixels in the image with the amplitude value smaller than the

threshold value were suppressed using the LUT0_0 (shown in Figure 3.9).

24



I 13x13 low-stop filter I

Ivo_..,o_oI

,r

Ivo_..,o_oI

[ I 7 14 14 7 I O-
I

3 13 26 26 13 3 0]

20 168 16_ 20 4

20 168 16_ 20 4

13 26 26 13

7 14 14 7 I

'0 0 0 0 0 0

:0 0 0 0 0 0 0

0 I 7 14 14 7 I

_0 3 13 26 26 13 3

]0 4 20 _1_ S8 20 4
!

[ 0 4 20 88 - _8 20 4
I

0 3 13 26 26 13 3 ]
I

0 I 7 14 14 7 IJ

(a)Algorithm (b) Implementation

Figure 3.7: Low-stop filter.

I Absolute value]

_ ISu_7'ont

......_.... 1"_7'e'
! NMS] _ Abs(NMS) ;

(a)Algorithm

I _'xTum
I _'MI'mum

.. 0..9,I P.O._.. o._0

t _ Pass
_ Subtraction

l ..... '°"i'_°'_
I

,NMS' Abs(NMS)I

(b) Implementation
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Feature extraction

The pixels passing the thresholding were extracted as features. The position and

amplitude of each feature were transmitted to the tracking subsystem. The information of

features can be extracted using the statistic module inside AM shown in Figure 3.10. Feature

coordinates were extracted using AM0_2, while feature amplitudes were extracted using

F .......
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Figure 3.9. Histogram accumulation and automatic threshold selection.

i NMS r THRESH

[Feature extraction I

i .... i ....... I

[NMS ITHRESHi
..... i

(a)Algorithm (b) Implementation

Figure 3.1 O: Feature Extraction.
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AM0_3. Sincethe thresholdvalue in the last stepwasselectedso that the numberof pixels

exceedingthethresholdis lessthana fixed rate,thenumberof featureswasguaranteedto fit into

thememorysurfacesafely. SincethetrackingsubsystemwasimplementedusingthehostCPU,

the featureswere transferredfrom the MaxPCI to the host memorysothe tracking subsystem

canreadfrom the hostmemorydirectly. Thetechniqueof HSIA wasusedto efficiently perform

thefeaturetransmissionthroughthePCIbus.

3.6.3 Tracking subsystem

This subsystem maintained a list of tracks containing the frame number, a unique ID,

position, velocity, and amplitude. The list was empty in the beginning. The following steps

were repeated for every frame:

(1) Input: The list of features was received from the image processing subsystem.

(2) Track update: For each track in the list of tracks, the list of features was scanned to obtain

features in a neighborhood window around the track's position. If there were any such features,

the strongest of these features was selected as the continuation of the track. Using the

coordinates of this feature, as well as the current track position and velocity, the expected

position and velocity for the next frame were estimated using a Kalman filter. If no such feature

was found in the neighborhood of the track, the position and velocity were extrapolated in the

same Kalman filter framework, using only the current values for the track. The track amplitude

was updated using recursive averaging with a forgetting factor:

=

where F_ and F+, arethe trackamplitudesforthecurrentand next frames,

F,,isthefeatureamplitude,and

a is the forgetting factor.

The feature amplitude F,, is zero if no feature is found.

(3) Formation of new tracks: After all the current tracks were updated, features in the feature

list were used to check for new tracks. For every feature, the list of tracks was scanned to see if

a track was already there in its neighborhood. If not, a track was created out of the feature. Its

position should be the same as the feature position, whereas velocity was initialized to zero. The

actual velocity was computed only in the next frame.
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(4) Pruning the list of tracks: If the number of tracks was too large, the subsystem can get

overloaded and fail to operate in real time. To eliminate this possibility, if the number of tracks

were greater than a particular number, the weakest tracks were deleted.

(5) Merging similar tracks: It may happen that two or more tracks may be formed

corresponding to the same object. Hence, tracks that were very close to each other and had

nearly the same velocity were merged, retaining the one with larger amplitude.

(6) Output: Tracks which satisfy the criteria of the object including amplitude larger than a

threshold, and other factors were output as potential objects.

Table 3.3 summarizes the required resources and execution throughput for the operations

described in this section. The required resources are based on the implementations on the

Datacube MaxPCI system. The reported execution throughput is based on an input image with

lkxlk resolution. The only exception is the histogram accumulation operation that uses a 256

bin (512 byte) histogram as the input. Therefore histogram accumulation executes much faster

than all the other operations.

Table 3.3: The required resources and execution throughput for operations

implemented on the Datacube MaxPCI system.

Operations AM AU DLY CH LUT VD

(input size)

NTD Record/Playback ( 1kx 1k) 2 0 0 1 0 0

Camera Acquire (lkxlk) 2 0 0 0 0 0

Temporal Differencing ( 1kxl k) 3 2 0 1 0 0

Non-maximum suppression 2 5 3 3 2 0

(lkxlk)

Histogram Accumulation 1 1 0 0 1 0

(256 bins)

Feature Extraction (1 kxl k)

Response

time (ms)

24.9

34.1

29.7

29.7

0.3

29.7
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3.7 Detection of contracting targets

The implementation of the detection algorithm for contracting targets can be divided into

three subsystems: the record/playback subsystem, image processing subsystem, and tracking

subsystem. The record/playback subsystem is exactly the same as the record/playback

subsystem for translating targets (explained in previous section). The tracking subsystem for

contracting targets is not implemented yet, though it is similar to the tracking subsystem for

translating targets. The image processing subsystem is explained in the following section.

3.7.1 Image processing subsystem for contracting targets

This subsystem performs the basic image processing steps to suppress clutter and extract

features that could potentially be contracting targets. Two algorithms were designed for the

detection of contracting targets. The first algorithm performs a Iowstop filter followed by six

dynamic programming operations (shown in figure A2), while the second algorithm performs

three morphological filter operations followed by six dynamic programming operations (shown

in figure A3). Both algorithms use a pyramid construction operation as a pre-processing step.

The algorithms can be separated into several individual operations. The individual operations

were implemented successfully on the Datacube MaxPCI system, however, extended work is

still required to arrange and connect individual operations together into a complete subsystem

for contracting targets.

Pyramid construction

To detect targets of a number of different sizes and velocities, spatial integration can be

performed by forming an image pyramid. A hierarchy of images, each with half the resolution

of the previous one was formed. A low-pass Gaussian filter was performed before down-

sampling to reduce the loss of sub-pixel information. A three-level pyramid construction can be

divided into three sequential pipes (shown in Figure 3.11). The first pipe smoothed and sub-

sampled the original l kxlk image into a 512x512 image, and copied the l kxlk image to the

destination memory surface. The second pipe smoothed and sub-sampled a 512x512 image into
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a 256x256image,andcopiedthe512x512imageto thedestinationmemorysurface.Finally, the

thirdpipe copiedthe256x256imageto thedestinationimage. It shouldbenotedthatthesethree

pipes cannot be executedconcurrentlybecausethey needto write into the samedestination

memorysurface(Am1_3).
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Figure 3.1 l: Pyramid Construction.
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Figure 3.12: Low-stop filter.
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Lowstop filter

A low-stop filter was used to suppress the background clutter. The filter was formed by

subtracting a low-pass filter of large size from a low-pass filter of a much smaller size. The

filter effectively subtracts from every pixei the mean of its neighborhood, thus suppressing

uniform background intensity and weak clutter. Since the VD_NMAC_A in the Convolver200

was occupied by the step of pyramid construction, the VD NMAC_C was used in this step. The

filter mask used is shown in Figure 3.12.

Morphological filter

In the case of an image with little or no clutter, a low-stop can be used. However, if the

background has significant clutter, the low-stop filter is not as effective in removing it. A

morphological filter [2] can remove large sized features (usually clutter), while retaining small

sized features (usually targets). A difference between the original image and its morphological

opening (top-hat transform) outputs small-sized positive targets--i.e., bright targets in dark

background_whereas the difference between the morphological closing and the original image

(bottom-hat transform) outputs negative targets, i.e., dark targets in bright background. Each of

these images can be separately used to detect targets.

The main operation inside a morphological filter is either a dilation followed by an

erosion (closing) or an erosion followed by a dilation (opening). A dilation (erosion) can be

done by configuring an arithmetic unit (AU) to perform a maximum (minimum) operation.

Delay elements (DLY0, DLYI, DLY2, and DLY3) were included in the pipe to adjust the

alignment properly (shown in Figure 3.13).

Temporal averaging

To decrease the probabilities of false alarms and missed detections, one can integrate

observations spatially or temporally. In case of stationary targets, optimal detection can be

achieved by adding (or averaging) the images in the sequence, and thresholding the output. A

recursive filter was used with a forgetting factor 'a' between 0 (full forgetting) and 1 (no

forgetting). The output F(k) at time k is given in terms of the input f(k) as:

F(O) = 0, F(k) = (1-a)f(k) + aF(k -1)
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I Dilate(1x3)I

I Erode(Ix3) I

Maximum

Minimum

(a)Algorithm (b) Implementation

Figure 3.13: Morphological Filter.

!
F(t-1 ) ! f(t)

L
I 4 I

-- 1 F(t)

High Byte Low Byte

High Byte High Byte Low Byte

(a)Algorithm (b) Implementation

Figure 3.14: Temporal Averaging.

In order to reduce the truncation error to a minimum, a 16 bit averaging operation was

desirable rather than an 8 bit averaging operation. An arithmetic unit (AU) was configured to

perform a weighted 16 bit averaging. The Am0_0 was set to stored the high byte, while the

Am0_l stored the low byte of the averaging output (shown in Figure 3.14).
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Dynamic programming

In case of moving targets, the temporal averaging filter does not improve the detection.

A dynamic programming algorithm [3] is more effective in detection of moving targets. The

algorithm is based on shifting the images before averaging them so as to align the target to be

detected. Since the velocity of the target could be arbitrary, the velocity space (u,v) is

discretized within the range of possible target velocities, and for each discrete velocity on the

grid, an intermediate image F is created recursively using:

F(x, y; u, v;O) = 0

F(x,y;u,v;k)= f(x,y;k)+a max F(x'-u,y'-v;u,v;k-1)

Finally, a maximum operation is performed at time N, when the result is to be reported:

F,, (x, y; K) = max F(x, y; u, v; K)
(u,v)

Each dynamic programming consists of four pipes. Each pipe is a recursive temporal

averaging with an additional dilation (maximum) in the loop (shown in Figure 3.15). The

Gp00 was configured to perform the weighted averaging, while the Gp0_l was configured to

perform a maximum operation with four inputs. The delay elements (DLY0, DLY 1) were

inserted in the proper position to achieve the correct alignments for the four inputs of the

maximum

-_3_/t_ 1 x3 xlI GpO0 [ Addition

(o,o) (o,-1), I
1o,o)" (1,o) (o,o)(1,o)(o,-1)0,-1)

Max mum Gp01 Maximum

F(t)

(a)Algorithm (b) Implementation

Figure 3.15" Dynamic Programming.
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Table 3.4summarizestherequiredresourcesandexecutionthroughputfor the operations

described in this section. The required resources are based on the implementations on the

Datacube MaxPCI system. The reported execution throughput is based on an input image with

l kx! k resolution. A smaller input size should result in a larger throughput.

Table 3.4: The required resources and execution throughput for operations

implemented on the Datacube MaxPCI system.

Operations

(input size)

Pyramid Construction (3 levels:

lkxlk, 512x512, 256x256)

Lowstop Filter ( 1kx I k)

Morphological Filter ( 1kx 1k,both

positive and negative, 3x3 kernel)

AM AU DLY CH LUT VD Response

time (ms)

2 0 0 0 0 1 39.2

1 1 l 0 0 1 29.7

2 10 4 2 0 0 29.7

Temporal Averaging ( 1kxl k) 3 1 0 1 0 0

Dynamic Programming ( 1kxl k) 5 9 4 7 0 0

29.7

29.7

3.8 Results of the implementation on MaxPCI

Figure 3.16 shows a trace of the tracking algorithm applied on an image sequence with the

target aircraft translating from the right to the left side of the image. A detection is shown by

drawing a small black square around the detected position. The distance between the host and

target aircraft is 3 nautical miles in this scenario.
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Figure3.16:Trackingalgorithmappliedonanimagesequencewith thetarget
aircraft translatingfromtheright to the left sideof the image at a distance of three

nautical miles. The target aircraft is located at the end of the track in this image.

Table 3.5 summarizes the performance of the translating target tracking algorithm for a

number of distances between host and target aircraft. The false alarm (FA) rate is the ratio of

the total number of false alarms throughout the sequence to the number of image frames in the

sequence. The miss detection (MD) rate is the ratio of the number of frames in which the target

was missed to the total number of frames. The false alarm rate depends on the amount of clutter

in the images, whereas the miss detection rate depends on the target size and contrast, and

therefore increases with the target distance in most cases. Since false alarms can be very

annoying to pilots, a low false alarm rate was more desirable than a low miss detection rate.

Hence, the parameters of the tracking algorithm were selected deliberately to reduce the false

alarm rate. The tracking parameters are the same for all scenarios. It is possible to get better

performance by adjusting parameters individually according to the characteristics (such as the

clutter level) of each scenario.
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Table3.5.Theperformanceof thetranslatingtargettrackingalgorithmfor a numberof target

distancesinnauticalmiles(nmi). Thefalsealarm(FA) rate ismeasuredastheratioof thetotal

numberof falsealarmsthroughoutthesequenceto thenumberof imageframesin thesequence.

Themissdetection(MD) rateismeasuredastheratioof thenumberof framesin whichthe

targetwasmissedto thetotalnumberof frames. Thealgorithmwasexecutedat 15FPSon the

DatacubeMaxPCIsystem.

Target

Description No. Brightness

Target 500 I Negative

feet below 2 Negative

TIFS 3 Negative

4 Positive

5 Positive

Target 500 6 Negative

feet above 7 Negative

TIFS 8 Negative

9 Negative

Random i 0 Negative

traffic 11 Positive

encounter 12 Negative

13 Negative

14 Negative

15 Negative

16 Negatwe

Target Distance

Direction[ (nmi)

RtoL

Lto R

RtoL

RtoL

RtoL

RtoL

RtoL

RtoL
I

RtoL

1.5

1.8

3.0

4.7

5.0

1.5

2.0

3.0

4.7

Ground

Clutter

Cloud

Clutter MD

0.061

0.113

0.056

0.363

0.803

0.061

0.092

0.057

0.335

FA

0.000

0.000

0.000

0.180

0.147

0.000

0.000

0.000

0.183

R to L 1.2 ** 0.159 0.063

L to R 2.4 0.059 0.000

R to L 3.0 * 0.053 0.000

R to L 3.0 * 0.089 0.000

L to R 3.0 ** 0.524 0.386

R to L 5.0 * 0.192 0.038

R to L 5.4 * * 0.643 0.000
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Chapter 4

Implementation of Obstacle

Detection Algorithms on MaxVideo

Before the delivery of the MaxPCI system in October 1998, some parts of the obstacle

detection algorithms were implemented on an old MaxVideo 200 system. MaxVideo 200 is an

earlier Datacube model that works slower and has fewer hardware resources. Two examples are

given in this section to explain the implementation on the MaxVideo system.

No matter whether the MaxPCI or the MaxVideo is used, the process of Imageflow

programming can be divided into four steps. The first step is to define the algorithms as

multiple parallel pipes to accomplish the desired tasks efficiently. These algorithms are then

mapped to a sequence of pipeline processing elements. After the pipeline processing elements

are defined, processing pipelines are built by setting programmable switches, routing the data

through the appropriate sequence of elements, and tying multiple elements together into a

processing pipeline. Third, the attributes of each pipelined processing element are set so that the

elements perform the desired processing operations. Finally, the actual image processing tasks

are performed by firing data through each of these pipes. Data can be fired though the pipe as

either a single shot or a continuous sequence of images.

4.1 Differences between the old MaxVideo system and

the current MaxPCI system

There are several improvements for the current MaxPCI system over the old MaxVideo

system (Table 4.1). First, the clock rate of the new system increases from 20 MHz to 40 MHz.

This means the data in the pipes can be fired two times faster than the current system. Second,
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Table4.1"Differencesbetweentheold MaxVideosystemandthecurrentMaxPCIs
s ,stem.

Old System

Pipelined Accelerator MaxVideo 200 MaxPC! x 2

Clock Rate 40MHz

Signal Input (MaxAcq)

Advanced Memory (AM)

Add-on Memory Module

Arithmetic Unit (AU)

Add-on Arithmetic Unit

Add-on Convolver Unit

Look-Up Table (LUT)

Clock Generator

20MHz in General

40MHz inside AM

Current System

Analog Digital or Analog

24MB _2MB x 2

IN/A

N/A

8x8 Kernel

(Advanced Processing Unit)

8 bit LUT

Bus Type VME

Host Machine Sun Sparc Workstation

16MB x 6

;(Storage 96 PSMOD)

i4

4x2

(General Purpose PSMOD)

200 Points Kernel

(Convolver 200 PSMOD)

16 bit LUT x 2

Unlimited

PCI

Pentium PC

there are more Advanced Memory (AM) elements in the new system. The AM not only can be

used as source and destination storage by the pipes, but they can also be used as intermediate

storage inside long pipes. With more AM, the new system has the ability to build datapaths for

more complex algorithms. Third, there are twelve Arithmetic Units (AU) in the new system.

Compared to the current system which has only one AU, there will be fewer resource conflicts

and we can fire more data pipes concurrently. Thus, the degree of parellelism can be increased

and the frame rate can be improved. Fourth, the Analog Scanner (AS) is replaced by the

MaxAcq acquisition unit, while the Analog Generator (AG) is replaced by the MaxVGA.

MaxVGA, a separate display card, inputs images from the MaxPCI through a private MaxVGA

bus, thus the display can be accelerated without interfering with the PCI bus traffic. Fifth, the

functions of the Advanced Processing (AP) unit are replaced by the selection of two add-on

Processing & Storage Modules (PSMOD). The variety of the PSMODs enables users to balance

their needs of processing, memory and resources. Finally, the capacity of the convolver (CV)
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and the look-up table (LUT) is also increased, giving us more flexibility to design and optimize

the datapath for our applications. Generally speaking, the new MaxPCI system far surpasses the

old MaxVideo system. Thus, a better frame rate can be obtained for the same obstacle detection

algorithms on the current MaxPCI.

4.2 Implementation of one branch of a morphological

filter

This section explains how to implement one branch of a morphological filter with a 2x2

mask (Figure 4.1a) on the MaxVideo system. Generally speaking, one branch of a

morphological filter consists of a minimum operation with four inputs followed by a maximum

Minimum . !

' w/'"-,_ Pipe I

Minimum i

F ............ 7

Maximum _i

; z'-_ Pi_,e2
Maximum I

_A_ Pipe I

LY [(delay one line)

AU_Nonlinear ](minimum)

e 2

(delay one line)

AU Nonlinear [ (maxirnurn)

(a) the flowchart of a branch (b) hardware mapping

in mophological filter of (a)

_' I!delay 1 pixel) [At, _', DI.Y0 I(delay I pixel)AUN I)I"(2

iAuNALu3I(max'm_mlLA°NA_UI]_,,,_,n,um)

[AU N ALU5 ](maximun,)

(c) the configuration of AU-Nonlinear performing

maximum operations. This is a part of pipe 1.

Figure 4.1: Implementation of a branch in

Mophological Filter
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operationwith anotherfour inputs. However,thereis only oneAU in theMaxVideowhich can

be divided into separateAU_Linear and AU_Nonlinear parts. The AU_Linear can be

configured to perform any arithmetic operation while the AU_Nonlinear can simultaneously

perform any logical operation. Both the AU_Linear and AU_Nonlinear are capable of handling

four inputs at a time. Thus, the processing of a morphological filter should be divided into two

pipes. The first pipe performs a minimum operation with four inputs and the second pipe

performs a maximum operation with another four inputs (Figure 4. lb). The four inputs of each

AU should be a 2x2 neighborhood window, i.e. (x,y), (x+l,y), (x,y+l) and (x+l,y+l).

MaxVideo uses delay elements to handle the correct alignment of data. The AU_DLY element

can handle only horizontal shifts while the AP_DLY element can handle vertical shifts. By

setting the crosspoint switchs and adjusting the element attributes, we can arrange the right

datapath that uses the combination of AU_DLY and AP_DLY to offer the desired alignment

(Figure 4. lc).

4.3 Implementation of one branch of a dynamic

programming

Now suppose we want to implement one branch of a dynamic programming on the

MaxVideo system. Generally speaking, the dynamic programming is a recursive averaging

followed by a maximum operation with four inputs (Figure 4.2a). Again, there is only one AU

in the MaxVideo so we need to divide the processing into two pipes (Figure 4.2b). In the first

pipe, the AU_Linear is configured into a 3:1 weighting adder. AU_Linear consists of three

adders and only one of them is used in this example. For each adder's input, there is one

multiplier to handle the weighting of that input. Here, before the addition is performed, the first

input is multiplied to three times while the second input remains the same. After the addition is

completed, there is a shifter to normalize the output. Since we want to divide the output by four,

we configure the shifter so that the output is shifted right for two bits (Figure 4.2c). In the

second pipe, the AU_Nonlinear is configured to perform a maximum operation with four inputs.

The configuration is the same as the case in the example of mophological filter (Figure 4. I c).
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II _ I I

lpe 2

_ _ Pipe I

lair I,Addi,ioo,

(delay one line)

(a) the flowchart of a branch (b) the hardware

in Dynamic Programming mapping of(a)

I AU L ADD1 [(addition)

I AU_L_SHIFT3 ] _right-shift 2 bits)

(c) the configuration of AU-Linear performing an 3:1

weighted addition operation. This is a part of pipe 1.

Figure 4.2. Implementation of a branch

in Dynamic Programming

4.4 Result of the implementation on MaxVideo

Several algorithms have been implemented on the old Datacube MaxVideo 200. Table

4.2 shows the result performance on different sizes of input images. The first number represents

how many frames can be executed per second, the second number in parameters represents the

number of sequential pipes required to perform the task. From the table, we can observe that

there are two factors affecting the frame rate. The first factor is the input image resolution. If

the resolution of the input image is doubled, then the frame rate is reduced to about one fourth.

The second factor is the complexity of the algorithms. More sequential pipes are required to

map a more complex algorithm. If the number of sequential pipes is doubled, then the frame

rate is reduced to half.
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Table 4.2: Resultsof the implementationon the currentMaxVideo system. The first number

representshow many framescan be executedper second,the secondnumber in parentheses

representsthenumberof sequentialpipesrequiredto performthetask.

!Testing Algorithms

Temporal Averaging

(with acquisition pipe & display pipe)
• Recursive

• Hierarchical 2 frames

• Hierarchical 4 frames

• Hierarchical 8 frames

Morphological Filter (both positive

negative target, with acquisition pipe)
• 2x2 mask

• 3x3 mask

• 4x4 mask

&

Morphological Filter

(both positive & negative target)
• 2x2 mask

• 3x3 mask
• 4x4 mask

Pyramid Construction&Lowstop Filter (3
level, both positive & negative target, with

acquisition pipe)

Dynamical Programming

Spatial-Temporal Averaging & Opitical Flow

(with acquisition pipe & display pipe)

Lowstop + Dynamic Programming (both

positive & negative target, including 128. 256

and 512 image pipes, with acquisition pipe &

display pipe)

Morphological + Dynamic Programming

(both positive & negative target, including
128, 256 and 512 image pipes, with

acquisition pipe & display pipe)

128x128

fps(pipes)

30 (5)
30 (4)

30 (5)

30(11)

30(12)

15 (20)

15 (20)

86.6 (10)

45.8 (18)

45.8 (18)

15 (9)

53 (15)

15

1.37

1.01

256x256

fps(pipes)

30 (5)
30 (4)
30 (5)
15(11)

15 (12)

10 (20)

10 (20)

25.7 (10)

14.5 (18)

14.5 (18)

15 (10)

17(15)

6

512x512

fps(pipes)

15 (5)
30 (4)

15 (5)

7.5 (11)

6(12)

3.3 (20)

3.3 (20)

7(10)

3.8(18)

3.8 (18)

10(11)

4.6(15)

IKxlK

fps(pipes)

7.5 (5)

15 (4)

7.5 (5)

3.7(12)

1.9 (12)

1.0 (20)

1.0 (20)

2.1 (10)

!.2 (18)

i.2 (18)

2.1 (13)

1.3(15)
Out of

Advanced

Memory
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Chapter 5

Conclusion

The feasibility of the real-time image capturing, recording and processing system was

demonstrated by two flight tests conducted by NASA this year. During the first flight test in

January 1999, image sequences were captured and recorded successfully at a rate of 30

frames/second. Ten real-time image sequences with translating targets, and six image sequences

with contracting targets were obtained, containing 90 GB (50 minutes) data total. The tracking

algorithms were designed and fine-tuned using these image sequences. During the second flight

test in September 1999, not only the real-time image capturing and recording was performed but

also the translating target tracking algorithm was executed concurrently at a rate of 15

frames/second. Output of the algorithm was displayed on an XVS display screen in the cockpit.

Nine real-time image sequences with translating targets were obtained, containing 20 GB (22

minutes) data. All image sequences are available upon request for further research on either

translating or contracting obstacle detection algorithms under different conditions (size, contrast,

background etc). It was observed that the system successfully detected and tracked translating

objects during the flight test.

In some image sequences, it was noticed that a lot of false alarms appeared as the host

aircraft changing direction. The reason of these false alarms was that some static background

clutters were mis-identified as moving targets due to the relative movements. Therefore, it

should be possible to reduce the false alarm rate of our system by considering the movement

data of the host aircraft. If the movement data of host aircraft can be acquired as an input of our

system, then the tracking can be adjusted to compensate the movement of host aircraft, thus

improve the target detection. Besides, though the individual operations for the detection of

contracting targets were implemented successfully, extended work is still required to arrange,

connect, and optimize individual operations together into a complete system for the detection of

contracting targets.
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Appendix

A. 1 Hardware specification of Datacube MaxPCI

Crosspoint backbone

• 65x75 connections, each 8-bit.

• 55x61 additional 1 bit connections.

• All connections are independent and parallel for construction multiple parallel image

pipelines.

• Connections can be switched in real-time.

• All run on system-wide synchronous 40 MHz pixel clock.

Arithmeteic Unit (AU)

• Two sets of AU in each MaxPCI

• 6 (8-bit) inputs from main crosspoint architecture.

• 4 (8-bit) output to main crosspoint architecture.

• Internal crosspoint allows internal re-circulation and flexibility: 10x12 for data path

routing within AU, each 10-bit.

• Linear section: Process 10 bit data with 10-bit or 20-bit output

• Non-Linear section: 4 to 2 to 1 binary tree arrangement of 10-bit ALUs, or 2 to 1 for

20-bit data.

• Statistic section: Sum, min, max, count of incoming pixel values or positions.

Look-up Table (LUT)

• Two sets of LUT in each MaxPCI, each LUT has 16-bit input, 16-bit output

• LUT data can be loaded through either PCI bus or pipeline transfer from crosspoint.

Histogram Processor (HP)

• 1024 bin 24-bit increment bin accumulator

• 8-bit or 10-bit data histograms

• 24-bit row or column summing
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• Canalsobeusedasa 10x24LUT or a 24-bitdelay line

• All bin accumulationdatacanbeoutputto eitherPCIbusor pipelinetransferto

crosspoint.

Delay Elements (DLY)

• Two different delay elements.

• Programmable pipeline delay/buffer elements.

Processing and Storage Modules (PSMOD)

• Each PSMOD has twelve 8-bit connections (4 input, 4 output, and 4 bidirectional) to

the crosspoint.

• Large family of PSMODs available with continuous expansion.

• Storage96 PSMOD equips six 16MB VSIMs

• Convolver200 PSMOD supports arbitrary 200-points convolution kernels

• General Purpose PSMOD

• Each module equips four complete AU devices.

• Twol6xl6LUTs

• Useful for complicate IP operations like grayscale morphology and median

filter.
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A.2 The diagrams for all implemented obstacle

detection algorithms

4' 4'

°P ; °0

Operation

(A) Magnitude Symbol
* 3"Outpui=Operation(lnpull P,lnput_ Q)/R

4' 4,

Operat ion

(B) Shift Symbol
Output(x,y)=Operation( Input l(x+x I ,y+y I ),lnput2(x+x2,y+y2 i)

Figure A I : Symbol Representation. All the figures in

this appendix follows these two symbol

representation. The symbol(A) represents that the first

inputl is multiplied by P and the second input is

multiplied by Q before performing the operation, then

the output of the operation is divided by R. The

symbol(B) represents that the first input is shifted by

(xl,yl) and the second input is shifted by (x2,y2)

before performing the operation.
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1

Input ( 1Kxl K) J

1
Pyramid Construction & Lowstop Filter

1 2 3

,r '?

D.P. D.P. DP. D,P.
dKxIK_ {lkxik_ (_t2_ _12_ _';12x5/2 _

li
Maximum Maximum

[1024x 1024) (512x512)

l :I
Output l I( 1024x 1024) Output2 ] [ Output3(512x512_ (256x256)

5 6

125hx2S_ _25++_25_

II
Maximum

(256x256)

,L

Figure A2 : Algorithm I. Generally speaking,

this algorithm performs a Iowstop filter (figure

A2-1 ) followed by six D.P. (Dynamic

Programming, figure A2-2) operations.
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Input(IKxlK) ]

Co__Cor_('olve ]

__,,r,n____

1256_256 I _ _ I256×256 I

,

Figure A2-1 • Pyramid Construction&Lowstop Filter

4 6 4convolution mask: ,6 24 16

24 36 24
16 24 16

4 6 4
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Addilion
4

Maximum Maximum

,y\

Addi2ion

A
HL(_ HLL_

Figure A2-2 : Dynamic Programming.

Generally speaking, the dynamic programming
consists of four branches. Each branch

represents one zoom and is constructed by a

recursive averaging operation followed by two

maximum operations, each operation has four

inputs.
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I

Input (1 Kxl K) 1

Pyramid Construction

1' l2
Filler Filter

(1024xl024) (512x5121

l, l,

i _a"mumII O_x'mum( 1024x 1024) (512x512)

Output I I Oulput2( 1024x 1024) (512x512)

3

Filter

(256x256)

:3,,:_1°P D,_,,
_25_,x2S_ _ 25¢_x

tl ,_aav.:v:_

IIou,_u,_,(256x256)

Figure A3 : Algorithm II. Generally speaking,

this algorithm performs a pyramid construction

(figureA3-1) following by three mophological

filters (figureA3-2, A3-3) and six D.P. (Dynamic

Programming, figure A2-2) operations.
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I Input (I Kxl K) I

I

Convolulion Mask:

I 4 6 4 I,

4 ]6 24 16 4 '
!

6 24 _,# 24 6 I
i

4 I_ 2-1 1¢_ 4 I
I

I 4 (_ 4 1/

Figure A3-1 : Pyramid Construction. In order to

detect objects with different sizes, it's necessary to

get information from the images with several

different resolutions. The pyramid construction is

used to generate four images with different

resolutions from the original image.
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i • i •

_....,,..,..._

_ro_lx3_I IEro_0_3X'_I

oilate,,x_JIOilatol3x_,I

Figure A3-2 : Morphological Filter (High Level).

This figure shows the high level view of a

morphological filter. Both the dilation and erosion are

gray-level morphologic operations. The (1 x3) or (3xl)

represents the size of the kernel of each morphologic

operation. The first output is equal to the original

image minus the image after opening operation, i.e.

dilation followed by erosion. The second output is

equal to the image after closing operation, i.e. erosion

followed by dilation_ minus the original image.
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Mi] hum

Mil limUnl

Figure A3-3 : Morphological Filter (Low Level). This

figure shows the low level view of a morphological

filter. The inputs of each minimum or maximum

operation should be shifted according to two

coordinate inside the operation box.
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Spatial-Temporal Smoothing

I Optical Flow Computation ]

[ Spatial Consistency test ]

i Temporal Consistency test ]

Figure A4 : Algorithm III. Figure A4-1 shows the

spatial temporal smoothing and optical Flow

computation. Figure A4-2 shows the spatial

consistency test. Since the temporal consistency test

is only performed on some feature points, it can be
done on the host machine instead of on the MaxPCI.
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Convolvel mask[2 1 0 - 1 - 2] Comol_e3, , mask,

IGausian (5x5) Con_olve2 mask : ' '

Convolution [2 I 0 I 2] r , ,
i i

O O_,

Figure A4-1 • Spatial Temporal Smoothing &

Optical Flow Computation (u,v) = (D,, / D, D / D)
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J

_I Threshold

Figure A4-2 • Spatial Consistency
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i 4 ,'_ 4 ][

[ 4 I_ 24 16 4 I

[ f_ 24 _(, 24 6 ._..

!4 16 24 Ifi 4 ....... t
I 4 _'_ 4

r I 7 14 14 7

i I3 26 26 13
20 16_ 168 20

20 16;: 16;: 20

3 13 26 26 13

i I 7 14 14 7

[ 0 0 0 0 0

0 0 0 0 0 0 0

0 I 7 14 14 7 t i

0 3 13 26 26 13 3[

0 4 20 gg 8_ 20 4 I

0 4 20 8;: ;:8 20 4

0 3 13 26 26 13

LO 1 7 14 14 7

4 ..... i

_lI-Frame(t+l) N Frame(t)N Frame(t'l)I

I Subtrac,,on I

Spatial Smoothing [

Subsampling by 2 I

Lowstop Filter I

Non-Maximum Suppressing I

I Histogram Generation I

I Automatic Threshold Selection I

[ Feature Extraction ]

I Trec.,.gbyhostO.UII
Figure A5 : Algorithm IV. Figure A5 shows the

temporal differencing algorithm to detect the

translating target. Since the tracking is only

performed on some feature points, it can be done on
the host machine instead of on the MaxPCI.
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